Applied Artificial Intelligence

Session 21: Language Model, and RNN for modeling sequences (such as text)

Fall 2018 NC State University Lecturer: Dr. Behnam Kia Course Website: https://appliedai.wordpress.ncsu.edu/

1 Nov 8, 2018

• Texts are among the most common types of data that we work on in Machine Learning.

- Machine learning algorithms usually do not take the raw text as inputs, rather text must be transformed to numeric values (numeric vectors). We do so by:
 - Segment text into <u>characters</u> and transform each to a vector.
 - or
 - Segment text into words and transform each to a vector.

or

Segment text into <u>n-grams of words</u> and transform each to a vector.

- Segment text into <u>characters</u> and transform each to a number or a vector.
- Example:

I am Groot -> "I" "a" "m" "space" "G" "r" "o" "o" "t" And then transform each token to a vector

- Segment text into <u>words</u> and transform each to a number or a vector.
- Example:

I am Groot -> "I" "am" "Groot"

And then transform each to a vector

How to model and represent language?

How to transform each token to a vector and represent a sentence with a vector: Method 1: One-hot encoding

Vocabulary={I, am, Groot} ?

Vocabulary={I, am, Groot, we, are}

Vocabulary={I, am, Groot, we, are}

- Texts are among the most common types of data that we work on in Machine Learning.
- Segment text into <u>n-grams of words</u> and transform each to a a vector.
- Example for 2-grams:

I am Groot -> "I" "am" "Groot" "I am" "am Groot" And then transform each token to a vector This representation is called bag-of-2-grams representation of the sentence. • In most text processing applications words are used as the main tokens.

One-hot encoding: Problems?

One-hot encoding: Problems?

- Vocabulary can have 10s of thousands of words.
 - Sparse high dimensional vectors.
 - Usually hardcoded
 - meaningless representation

Word Embedding (word vectorization)

- Each word is represented by a dense, low-dimensional, floating point vectors.
- 256 dimensional, 512 dimensional, or 1024 dimensional.

Word Embedding (word vectorization)

- Each word is represented by a dense, low-dimensional, floating point vectors.
- 256 dimensional, 512 dimensional, or 1024 dimensional.
- Ideally, the geometric relationship between word vectors should reflect the semantic relationship between these vectors.

Word Embedding (word vectorization)

Ideally, the geometric relationship between word vectors should reflect the semantic relationship between these vectors.

https://www.tensorflow.org/tutorials/representation/word2vec

How to implement word embedding?

1- Learn jointly with the main task.

How to implement word embedding?

- 1- Learn jointly with the main task.
- 2- Load a pretrained word embedding

 Please see the codes: Session 21: Simple RNN for text classification