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Feedforward networks for Regression
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Gradient Descent
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Gradient Descent
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Momentum
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(%

Momentum
Exponentially decaying moving average of the gradients

Numerical Example:

= —[0.91th_1 —+ 0.92th_2 + -+ 0.91th_10 —+ (1 — Og)xgt]

g; Is gradient at step /

Window size is 10 here, it could be infinity. With
exponentially decaying weights it won't differ too much.

vy = 09%Xvi_; — (1 —0.9)%xg;
Instead of 0.9 we can take other numbers between 0 and 1.
The closer to 1, the higher the momentum. ’
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A picture of the Nesterov method

* First make a big jump in the direction of the previous accumulated gradient.
* Then measure the gradient where you end up and make a correction.

brown vector = jump, red vector = correction,  green vector = accumulated gradient

blue vectors = standard momentum

From Geoffrey Hinton’s lectures at UT 9



NC STATE UNIVERSITY

RMSProp

« RMSProp: Adapting step size separately for each
parameter.

— For each direction (parameter) divide the gradient by
a running average of its recent magnitude
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Adam

« Adam=RMSProp+Momentum
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Sequence Processing

Amazon Movie Reviews  AmznMovieRevws - Jul 24

53 Life of Pi.

3.1415HOLY

Yo7 Misleading
By Michael M. - May 8, 2015

| screened this film for the students in
my 9th grade algebra class and was
very upset.
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Feedforward networks have no memory
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Not feasible for very large sequences
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| went to Nepal in 2009. In 2009, | went to Nepal. 18
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Separate parameters for each time step.
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| went to Nepal in 2009. In 2009, | went to Nepal. 19



NC STATE UNIVERSITY

No/poor generalization, especially for
sequence sizes not observed during the

[ n
training.
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No/poor generalization, especially for
sequence sizes not observed during the

[ n
training.
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When you have separ:ate parameters for each location, all rules need to be

separately learned for each position. .,
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CNNs

» CNNs are specialized to handle a grid of data, e.g. an images.
* And they can scale easily for larger images.

« Parameter sharing through application of kernels.
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Picture from: A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
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Recurrent Neural Networks

(opposed to feedforward Neural Networks)
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