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Deep Feedforward Networks’ Problems

o Size:

— Imagine an image of 1000*1000 pixel.
— And the input layer has 1000 neurons.

— We are going to have 10° connections and
parameters to learn.
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Deep Feedforward Networks’ Problems

« This fully connected network doesn’t pay attention to
spatial or temporal structure of the input.

— For example, shuffle the pixels in all images in the
data set in the same, result unrecognizable for human
eye, but network will still classify them.
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Deep Feedforward Networks’ Problems

 DNNSs expect the patterns (or objects) in the exact
location and in the exact orientation that they were
trained for.

« Translate or rotate the patterns and DNN might fail to
recognize it.
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Solution is Coming from Neuroscience

"for his discoveries concerning the functional specialization of the cerebral hemispheres”
"for their discoveries concerning information processing in the visual system”
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Roger W. Sperry
D 122 of the prize
USA

California Institute of
Technology (Caltech)
Pasadena, CA, USA

b. 1913
d. 1994

David H. Hubel
(@ 1/4 of the prize
USA

Harvard Medical School
Boston, MA, USA

b. 1926
(in Windsor, ON, Canada)

Torsten N. Wiesel
(® 174 of the prize

Sweden

Harvard Medical School
Boston, MA, USA

b. 1924
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Solution is Coming from Neuroscience
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Solution is Coming from Neuroscience

* In visual cortex:

o Many neurons have small local receptive fields.

o Some neurons react to a specific feature, whereas
some others react to another feature.

o Some higher level neurons have a larger receptive
field, and react to more complex patterns produced
by a combination of simpler patterns of neighboring
low level neurons.
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Picture from: A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
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Gradient-Based Learning Applied
to Document Recognition

YANN LECUN, MEMBER, IEEE, LEON BOTTOU, YOSHUA BENGIO, AND PATRICK HAFFNER

Invited Paper
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Convolutional Layer

« Each neuron in a convolutional layer 1 is connected to
pixels in its receptive fields (not to all pixels).

* And each neuron in convolutional layer 2 is connected
to convolutional layer 1 neurons in its receptive field

(not to all neurons).
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Picture from: A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
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Convolutional Layer: Filter
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Picture from: |. goodfelow, et. al. Deep Learning. | added bias value t — Behnam Kia
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Image Processing
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Stacking Convolutional Layers
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Picture from: A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
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Pooling Layer
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Figure 13-8. Max pooling layer (2 x 2 pooling kernel, stride 2, no padding)
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Picture from: A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
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CNN Architecture
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Picture from: A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems



