
Applied Artificial Intelligence

Session 15: Exam Review

Fall 2018

NC State University
Lecturer: Dr. Behnam Kia

Course Website: https://appliedai.wordpress.ncsu.edu/

1

Oct 18, 2018

What is an AI problem?
• If the problem is described by a set of formal mathematical

rules (coming from Math, Physics, Chemistry, Biology, etc.),
and there are known methods to solve it, develop a
conventional computer program and solve it. Usually this is
not an AI problem – unless it has exponential complexity.

• If there is no formal mathematical description to the problem, but
the problem is easy for humans to solve (intuitively), then this is
an AI problem.

2

Classification
Dog/Cat?

Speech Recognition

Aug 23, 2018PY-599 (Fall 2018): Applied Artificial Intelligence

What is Artificial Intelligence

• Artificial intelligence “tries” to mimic
human intelligence.

• So far AI methods have been problem-
specific, and we have no general-purpose,
human-like General AI system.

• In this course we focus on these problem-
specific AI methods, also known as
Narrow AI.

3
Aug 23, 2018PY-599 (Fall 2018): Applied Artificial Intelligence

New Additions to AI (Machine Learning)
Problems

• Extracting knowledge from Big Data
– And usually there is no formal,

solution.

• Solving dynamic and varying problems.
– The static version of the problem

may or may not have a formal
solution. But when the problem
changes, so should the solution. This
is not trivial.

4Spam email list
Aug 23, 2018PY-599 (Fall 2018): Applied Artificial Intelligence

AI Problems

• Problems simple for humans, but not for computers.

• Extracting knowledge from Big Data.

• Solving dynamic, varying problems.

5
Aug 23, 2018PY-599 (Fall 2018): Applied Artificial Intelligence

Artificial Intelligence

6
Picture from NVIDIA’s deep learning institute

Aug 23, 2018PY-599 (Fall 2018): Applied Artificial Intelligence

What you can expect from this course?

At the end of the semester you will:

• know what an AI problem is and what is not!
• learn the basic foundations of deep learning and how to

apply it to AI problems.
• gain basic hands-on experience with AI development

tools and software.
• get enough experience, knowledge, and confidence to

pursue on your own and learn more advanced topics.

7
Aug 23, 2018PY-599 (Fall 2018): Applied Artificial Intelligence

Rationalism
• Mind is a reasoning machine.

• It is equipped with knowledge,
and with a reasoning engine it
deduces new knowledge or
solutions.

• So to create AI we need:
• Knowledge representation.
• A reasoning engine.

The Empiricists

9

• Mind is a learning machine!

• Empiricism emphasizes the
role of experience, discounts
the value of a priori
reasoning.

• So to create AI we need:
• Learning algorithms.
• A lot of data.

Machine Learning Flowchart
(Which Follows Scientific Method)

Scientific Method

Hypothesis
(Trained Model
with the Data)

Gather Data

Test Hypothesis
with NEW Data

Results
Satisfactory?

No

Deploy

Yes

Machine Learning:
Training Model with Data

Training Data: (xi,	yi),	i=1,2,3,…,N
x is called feature, y is label.

Hypothesis
(Trained Model
with the Data)

Parametric Modelx

y

Error Signal to
Adjust Parameters

How to Adjust Parameters?

• This is an optimization problem to find
parameter values, P*, that minimizes the error.

P* = argminP Error(x, y, y
^

)
Trainingset
∑

P* = argminP J (P)

Another common way to say this is shown
below, where J is cost function

Underfitting and Overfitting

13

14

Training Data Test
Data

Train the model using this

Test the trained model using this

Parametric Models:

Linear Regression
SVM
Naïve Bayes
Feedforward multilayer networks
Convolutional Network
Recurrent Neural Network

LSTM
GRU

.

.

.

On the Limitation of the Models

• "All models are wrong but some are useful1”

16

1Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, R. L.;
Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236.

https://en.wikipedia.org/wiki/Academic_Press

On the Limitation of the Models

• “Models have limitations, stupidity does not!”

17

1Rodriguez, A. (2010) Arizona State University, ”Linear System Theory", course notes.

On the Limitation of the Models

• “Models have limitations, stupidity does not!”

18

1Rodriguez, A. (2010) Arizona State University, ”Linear System Theory", course notes.

19

Training Data Test
Data

Train the model using this data for different h values.

Test the trained
model with optimal h

using this
Dev
Data

Take the model with h value that
performs the best on this data.

Probability and Statistics

20

Random Variable

• A random variable is a variable that takes different
possible outcomes of a random experiment.

• Random variable can be discrete or continuous.

21

Probability Distribution Functions

• Probability distribution function is a description of how
likely a random variable or a set of variables is to take on
each of its possible states.

22X=H X=T

0.5

P(X) Flipping a Coin
P(X)

Cat’s weight

9lbs

Conditional Probability

P(y|x)

23

Bayes Rule

• ! " # = % # " %(')
%())

24

Posterior *+,-*+ℎ//0 !1+/1

23+0-45- (4/167*+879+/4 :759/1)

Example
• Imagine you are designing a filter for spam emails. And from training

data (you have lots of labeled good emails(nicknamed ham) and lots
of spam emails labeled spam). You have derived a probabilistic
model P(email text | spam) and another probabilistic model P(email
text | ham).

• You receive a new email, new_email, that you don’t know whether it
is spam or a good email. And you have no prior knowledge about
the probability of emails being spam or ham. Your probability models
say that:

P(new_email| spam)=0.4
P(new_email |ham)=0.6
How your probabilistic system should label and classify this new_email
in order to minimize the error rate?

25

• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email)
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email)

26

• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email)
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email)

P(spam |new_email)=0.4*P(spam)/P(new_email)
P(ham |new_email)=0.6*P(ham)/P(new_email)

P(spam |new_email)=0.4*0.5/P(new_email)
P(ham |new_email)=0.6*0.5/P(new_email)

27

P(spam)=p(spam)=0.5

• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email)
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email)

P(spam |new_email)=0.4*P(spam)/P(new_email)
P(ham |new_email)=0.6*P(ham)/P(new_email)

P(spam |new_email)=0.4*0.5/P(new_email)
P(ham |new_email)=0.6*0.5/P(new_email)

28

P(spam)=p(spam)=0.5

• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email)
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email)

P(spam |new_email)=0.4*P(spam)/P(new_email)
P(ham |new_email)=0.6*P(ham)/P(new_email)

P(spam |new_email)=0.4*0.5/P(new_email)
P(ham |new_email)=0.6*0.5/P(new_email)

29

P(spam)=p(spam)=0.5

Error Probability

Example
• Imagine you are designing a filter for spam emails. And from training

data (you have lots of labeled good emails(nicknamed ham) and lots
of spam emails labeled spam). You have derived a probabilistic
model P(email text | spam) and another probabilistic model P(email
text | ham).

• You receive a new email, new_email, that you don’t know whether it
is spam or a good email. Imagine in that day your email was under
attack by spammers and 90% of the email you have received that
day were spam, P(spam)=0.9. Your probability models say that:

P(new_email| spam)=0.4
P(new_email |ham)=0.6
How your probabilistic system should label and classify this new_email
in order to minimize the error rate?

30

• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email)
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email)

31

• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email)
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email)

P(spam |new_email)=0.4*0.9/P(new_email)
P(ham |new_email)=0.6*0.1/P(new_email)

32

• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email)
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email)

P(spam |new_email)=0.4*0.9/P(new_email)
P(ham |new_email)=0.6*0.1/P(new_email)

P(spam |new_email)=0.36/P(new_email)
P(ham |new_email)=0.06/P(new_email)

33

Error Probability

Naïve Bayes Rule

34

p(y | x1,x2 ,...,xk) =
p(x1,x2 ,...,xk | y)p(y)

p(X)

≈
p(x1 | y)p(x2 | y)...p(xk | y)p(y)

p(X)

Bayes Rule

Naïve Bayes Rule

p(x1,x2 ,...,xk | y) ≈ p(x1 | y)p(x2 | y)...p(xk | y)

We have assumed that features x1, x2,…, and xk are
conditionally independent given y

Linear Algebra

35

36

output = f (Xp) =
1 if WT .X p>0

0 if otherwise

⎧
⎨
⎪

⎩⎪

b

Vectorized Gradient Descent in 2D

37

!"#$% = !'())#"% − α∇-.(!)

J(W)

w1
w2

1.(!)
123

= 1
56

7
8937 (897 .! − ;7)

∇-. ! = <
=>9

?. (>9 .! − ;)

Manifold Assumption
(Manifold Hypothesis)

• Manifold Assumption: Real-world high-dimensional data
sets lie close to a much lower-dimensional manifold.

• Manifold is a connected subset of a higher dimensional
space. (rough definition)

38

Dimension Reduction
• Linear Algebra provides many techniques, including

Principal Component Analysis, for dimension reduction.

• Many of these techniques are implemented in Python
Modules (e.g. in scikit-learn).

39

Principal Component Analysis (PCA)

• PCA is the most common dimension reduction algorithm.

• There are many other dimension reduction algorithms as
well.

40

We have Regression Problems, and we have Classification
Problems.

Linear Models:

• Linear Regression
• Logistic Regression

41

42

Input: x (the size of house)
Target: y (the price of the house), y∈ "
Linear Model: #$ = &'(' + &*(*

#$ = +.-
where:

(. = [1, (*]
- = &'

&*

Linear Regression Model: House Prices

House Prices
Mean Squared Error
as Cost Function

! = #$
#% ?

(x ft2,$ y K)
(3883 ft2,$432K)
(1668 ft2,$218K)
(3577 ft2,$366K)
(765 ft2,$123K)
(3822 ft2,$493K)
(1668 ft2, $218K)

1668 ft2

$218K

&' = ℎ(*) = 1 1668 .W
=$140K

Cost Function for entire
training set:

J(W)= %
/∑1 (ℎ(&*

1) − '1)2

Size of training data

The Problems of the Analytical Method

!"#$%&'(= argmin
0

J(W)

J(W) = 5
67
∑%(!9. ;#% − =%)2

>?(0)
>0

= 0 Woptimal=(A#9. A#)B5. A#9.y

;#5

;#7

(n,1+1)

A# =

1 3883
1
1
⋮
1

1668
3577
⋮

1668

= =

432L
218L
366L
⋮

218L

(n,1)
=5

=7

See proof at: The Elements of Statistical Learning,

T. Hastie, R. Tibshirani, J. Friedman, Page 12, and

pages 44-45

45

J(w)

w

Gradient Descent

46

J(w)

w

Gradient Descent

47

J(w)

w

Gradient Descent

48

J(w)

w

Gradient Descent

49

J(w)

w

Gradient Descent

50

J(w)

w

Gradient Descent

51

J(w)

w

Gradient Descent

52

J(w)

w

Gradient Descent

How to Formulate Gradient Descent?

53

J(w)

w

!"#$% = !'())#"% − α
,-(!)
,!

!'())#"%

!"#$%

For simplicity we start from 1-D w, then will extend the concepts to
2-D w’s.

α is learning rate.

Vectorized Gradient Descent in 2D

54

!"#$% = !'())#"% − α∇-.(!)

J(W)

w1
w2

1.(!)
123

= 1
56

7
8937 (897 .! − ;7)

∇-. ! = <
=>9

?. (>9 .! − ;)

“Batch” Gradient Descent

55

!"#$% = !'())#"% − α∇-.(!)

1.(!)
123

= 1
56

7
8937 (897 .! − ;7)

∇-. ! =

1
12<

.(!)
1
12=

.(!)
⋮

1
12?

.(!)

Loops over the entire training set.

“Stochastic” Gradient Descent

56

!"#$% = !'())#"% − α∇-.(!)

1.(!)
123

= 4536 (456 .! − 86)

∇-. ! =

1
129

.(!)
1
12:

.(!)
⋮

1
12<

.(!)
1.(!)
123

= 1
>?

6
4536 (456 .! − 86)

“Batch” Gradient Descent

i is randomly selected.

• Mini-Batch Gradient Descent: Something between Batch
Gradient Descent and Stochastic Gradient Descent. Still
very stochastic for small batch sizes.

57

58

b

y

x0=1

! = # + %& '& + %('(+….+ %+ '+
=%, ', + %& '& + %('(+….+ %+ '+
=-../

012312 = 4 !

5 ! = 1
1 + 789

Cost Function

59

! " = − %
& ∑()%& [+(log /0(." + 1 − +(log 1 − /0(."

4!(")
478

= 1
9:

(
/08((;+(− +()

XOR Problem:

Slides are from Goodfellow, et.al for “Deep Learning” Book

XOR Problem:
What can we do?

• Apply linear models not to input x, but to a transformed
input ! " , where ! is a nonlinear transformation.

61

XOR Problem:
What can we do?

• Multilayer Neural Network (AKA Deep Learning):
– The strategy is to learn ! as well

"#= ! $,&' .&)

Up until now we had: "#=$.&

62

XOR Problem:
What can we do?

• Multilayer Neural Network (AKA Deep
Learning):
– The strategy is to learn ! as well

"#= ! $,&' .&)

Up until now we had: "#=$.&
63

Multilayer Neural Network (AKA Deep
Learning)

• Logistic unit Neuron Model

• Parameters weights

• Output function Activation function
64

Multilayer Feedforward Neural Network
(Deep Feedforward Networks)

Good News

A Feedforward Neural Network with one hidden
layer can represent and approximate any

function to an arbitrary degree of accuracy.

This is called Universal Approximation
Theorem.

65

Multilayer Feedforward Neural Network
(Deep Feedforward Networks)

Good News

• Deeper networks are much more powerful than shallow
networks.

• Shallow network may need exponentially more width
(neurons in a layer) to implement the same function.

66

Eldan, Ronen, and Ohad Shamir. "The power of depth for feedforward neural
networks." Conference on Learning Theory. 2016.
J. Hastad. Almost optimal lower bounds for small depth circuits. ACM
symposium on Theory of computing,. ACM, 1986

Multilayer Feedforward Neural Network
(Deep Feedforward Networks)

Bad News

67

Multilayer Feedforward Neural Network
(Deep Feedforward Networks)

Bad News

68

Complexity Classes

69

P: Can be solved in polynomial time.

Complexity Classes

70

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.

NP

Complexity Classes

71

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: At least as hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

Complexity Classes:
One Million Dollar Question!

72

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P=NP
?

Complexity Classes:
One Million Dollar Question!

73

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P≠NP many believe

Stochastic Gradient Descent

• my_model.compile(loss='categorical_crossen
tropy', optimizer='sgd',
metrics=['accuracy'])

• my_model.fit(X_train, Y_train, epochs=50,
batch_size=10, verbose=2)

74

Multilayer Feedforward Neural Network
(Deep Feedforward Networks)

Bad News

75

Universal Approximation Theorem says that a large
enough network can approximate any function.

But it doesn’t say how to train the network or learn
those parameters to approximate the desired
function.
And it says nothing about the architecture and size
of the network.

76

Training Data Test
Data

Train the model using this data for different h values.

Test the trained
model with optimal h

using this
Dev
Data

Take the model with h value that
performs the best on this data.

• Training set: Which you run your learning algorithm on.

• Development set (AKA Validation set): Which you use to
tune parameters, select features, and make other decisions
regarding the learning algorithm.

• Test set: which you use to evaluate the performance of the
algorithm, but not to make any decisions regarding what
learning algorithm or parameters to use.

77

Design Process and Cycle for Machine
Learning

78

