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What is an AI problem?
• If the problem is described by a set of formal mathematical 

rules (coming from Math, Physics, Chemistry, Biology, etc.), 
and there are known methods to solve it, develop a 
conventional computer program and solve it. Usually this is 
not an AI problem – unless it has exponential complexity.

• If there is no formal mathematical description to the problem, but 
the problem is easy for humans to solve (intuitively), then this is 
an AI problem.
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What is Artificial Intelligence

• Artificial intelligence “tries” to mimic 
human intelligence.

• So far AI methods have been problem-
specific, and we have no general-purpose, 
human-like General AI system.

• In this course we focus on these problem-
specific AI methods, also known as 
Narrow AI.
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New Additions to AI (Machine Learning) 
Problems

• Extracting knowledge from Big Data
– And usually there is no formal, 

solution.

• Solving dynamic and varying problems. 
– The static version of the problem 

may or may not have a formal 
solution. But when the problem 
changes, so should the solution. This 
is not trivial.

4Spam email list
Aug 23, 2018PY-599 (Fall 2018): Applied Artificial Intelligence



AI Problems

• Problems simple for humans, but not for computers.

• Extracting knowledge from Big Data.

• Solving dynamic, varying problems.
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Artificial Intelligence
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What you can expect from this course?

At the end of the semester you will:

• know what an AI problem is and what is not!
• learn the basic foundations of deep learning and how to 

apply it to AI problems.
• gain basic hands-on experience with AI development 

tools and software. 
• get enough experience, knowledge, and confidence to 

pursue on your own and learn more advanced topics.
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Rationalism
• Mind is a reasoning machine.

• It is equipped with knowledge, 
and with a reasoning engine it 
deduces new knowledge or 
solutions. 

• So to create AI we need:
• Knowledge representation.
• A reasoning engine.



The Empiricists
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• Mind is a learning machine!

• Empiricism emphasizes the 
role of experience, discounts 
the value of a priori 
reasoning. 

• So to create AI we need:
• Learning algorithms.
• A lot of data.



Machine Learning Flowchart
(Which Follows Scientific Method)
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Machine Learning:
Training Model with Data

Training Data: (xi,	yi),	i=1,2,3,…,N
x is called feature, y is label.

Hypothesis
(Trained Model 
with the Data)

Parametric Modelx

y

Error Signal to 
Adjust Parameters



How to Adjust Parameters?

• This is an optimization problem to find 
parameter values, P*, that minimizes the error.

P* = argminP Error(x, y, y
^

)
Trainingset
∑

P* = argminP J (P)

Another common way to say this is shown 
below, where J is cost function



Underfitting and Overfitting
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Training Data Test 
Data

Train the model using this

Test the trained model using this



Parametric Models:

Linear Regression
SVM
Naïve Bayes
Feedforward multilayer networks
Convolutional Network
Recurrent Neural Network

LSTM
GRU

.

.

.



On the Limitation of the Models

• "All models are wrong but some are useful1”

16

1Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, R. L.; 
Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236.

https://en.wikipedia.org/wiki/Academic_Press


On the Limitation of the Models

• “Models have limitations, stupidity does not!”
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1Rodriguez, A. (2010) Arizona State University, ”Linear System Theory", course notes.



On the Limitation of the Models

• “Models have limitations, stupidity does not!”

18

1Rodriguez, A. (2010) Arizona State University, ”Linear System Theory", course notes.
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Training Data Test 
Data

Train the model using this data for different h values.

Test the trained 
model with optimal h

using this
Dev 
Data

Take the model with h value that 
performs the best on this data.



Probability and Statistics
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Random Variable

• A random variable is a variable that takes different 
possible outcomes of a random experiment.

• Random variable can be discrete or continuous. 
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Probability Distribution Functions

• Probability distribution function is a description of how 
likely a random variable or a set of variables is to take on 
each of its possible states.
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0.5

P(X) Flipping a Coin
P(X)

Cat’s weight

9lbs



Conditional Probability

P(y|x)
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Bayes Rule

• ! " # = % # " %(')
%())
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Posterior *+,-*+ℎ//0 !1+/1

23+0-45- (4/167*+879+/4 :759/1)



Example
• Imagine you are designing a filter for spam emails. And from training 

data (you have lots of labeled good emails(nicknamed ham) and lots 
of spam emails labeled spam). You have derived a probabilistic 
model P(email text | spam) and another probabilistic model P(email 
text | ham).

• You receive a new email, new_email, that you don’t know whether it 
is spam or a good email. And you have no prior knowledge about 
the probability of emails being spam or ham. Your probability models 
say that:

P(new_email| spam)=0.4
P(new_email |ham)=0.6
How your probabilistic system should label and classify this new_email
in order to minimize the error rate? 
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• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email )
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email )
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• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email )
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email )

P(spam |new_email)=0.4*P(spam)/P(new_email )
P(ham |new_email)=0.6*P(ham)/P(new_email )

P(spam |new_email)=0.4*0.5/P(new_email )
P(ham |new_email)=0.6*0.5/P(new_email )
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P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email )
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email )

P(spam |new_email)=0.4*P(spam)/P(new_email )
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• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email )
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email )

P(spam |new_email)=0.4*P(spam)/P(new_email )
P(ham |new_email)=0.6*P(ham)/P(new_email )

P(spam |new_email)=0.4*0.5/P(new_email )
P(ham |new_email)=0.6*0.5/P(new_email )
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P(spam)=p(spam)=0.5

Error Probability



Example
• Imagine you are designing a filter for spam emails. And from training 

data (you have lots of labeled good emails(nicknamed ham) and lots 
of spam emails labeled spam). You have derived a probabilistic 
model P(email text | spam) and another probabilistic model P(email 
text | ham).

• You receive a new email, new_email, that you don’t know whether it 
is spam or a good email. Imagine in that day your email was under 
attack by spammers and 90% of the email you have received that 
day were spam, P(spam)=0.9. Your probability models say that:

P(new_email| spam)=0.4
P(new_email |ham)=0.6
How your probabilistic system should label and classify this new_email
in order to minimize the error rate? 
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• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email )
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email )
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• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email )
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email )

P(spam |new_email)=0.4*0.9/P(new_email )
P(ham |new_email)=0.6*0.1/P(new_email )
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• ! " # = % # " %(')
%())

P(spam |new_email)=P(new_email |spam)P(spam)/P(new_email )
P(ham |new_email)=P(new_email |ham)P(ham)/P(new_email )

P(spam |new_email)=0.4*0.9/P(new_email )
P(ham |new_email)=0.6*0.1/P(new_email )

P(spam |new_email)=0.36/P(new_email )
P(ham |new_email)=0.06/P(new_email )
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Error Probability



Naïve Bayes Rule 
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p( y | x1,x2 ,...,xk ) =
p(x1,x2 ,...,xk | y)p( y)

p(X )

≈
p(x1 | y)p(x2 | y)...p(xk | y)p( y)

p(X )

Bayes Rule

Naïve Bayes Rule

p(x1,x2 ,...,xk | y) ≈ p(x1 | y)p(x2 | y)...p(xk | y)

We have assumed that features x1, x2,…, and xk are 
conditionally independent given y  



Linear Algebra
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output = f (Xp) =
1 if WT .X p>0

0 if otherwise

⎧
⎨
⎪

⎩⎪

b



Vectorized Gradient Descent in 2D
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!"#$% = !'())#"% − α∇-.(!)

J(W)

w1
w2

1.(!)
123

= 1
56

7
8937 (897 .! − ;7 )

∇-. ! = <
=>9

?. (>9 .! − ;)



Manifold Assumption
(Manifold Hypothesis)

• Manifold Assumption: Real-world high-dimensional data 
sets lie close to a much lower-dimensional manifold. 

• Manifold is a connected subset of a higher dimensional 
space. (rough definition)
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Dimension Reduction
• Linear Algebra provides many techniques, including 

Principal Component Analysis, for dimension reduction.

• Many of these techniques are implemented in Python 
Modules (e.g. in scikit-learn).
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Principal Component Analysis (PCA)

• PCA is the most common dimension reduction algorithm.

• There are many other dimension reduction algorithms as 
well.
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We have Regression Problems, and we have Classification 
Problems.

Linear Models:

• Linear Regression 
• Logistic Regression
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Input: x (the size of house)
Target: y (the price of the house), y∈ "
Linear Model: #$ = &'(' + &*(*

#$ = +.-
where:

(. = [1, (*]
- = &'

&*

Linear Regression Model: House Prices



House Prices
Mean Squared Error
as Cost Function

! = #$
#% ?

(  x  ft2,$ y K) 
(3883 ft2,$432K)
(1668 ft2,$218K)
(3577 ft2,$366K)
(765 ft2,$123K)
(3822 ft2,$493K)
(1668 ft2, $218K)

1668 ft2

$218K

&' = ℎ(*) = 1 1668 .W
=$140K

Cost Function for entire 
training set:

J(W)= %
/∑1 (ℎ(&*

1) − '1)2

Size of training data



The Problems of the Analytical Method

!"#$%&'( = argmin
0

J(W)

J(W) = 5
67
∑%(!9. ;#% − =% )2

>?(0)
>0

= 0 Woptimal=(A#9. A#)B5. A#9.y

;#5

;#7

(n,1+1)

A# =

1 3883
1
1
⋮
1

1668
3577
⋮

1668

= =

432L
218L
366L
⋮

218L

(n,1)
=5

=7

See proof at: The Elements of Statistical Learning, 

T. Hastie, R. Tibshirani, J. Friedman, Page 12, and 

pages 44-45
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J(w)

w

Gradient Descent
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J(w)

w

Gradient Descent
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J(w)

w

Gradient Descent
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J(w)

w

Gradient Descent
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J(w)

w

Gradient Descent
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J(w)

w

Gradient Descent
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J(w)

w

Gradient Descent
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J(w)

w

Gradient Descent



How to Formulate Gradient Descent?
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J(w)

w

!"#$% = !'())#"% − α
,-(!)
,!

!'())#"%

!"#$%

For simplicity we start from 1-D w, then will extend the concepts to 
2-D w’s.

α is learning rate.



Vectorized Gradient Descent in 2D
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!"#$% = !'())#"% − α∇-.(!)

J(W)

w1
w2

1.(!)
123

= 1
56

7
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=>9
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“Batch” Gradient Descent
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!"#$% = !'())#"% − α∇-.(!)

1.(!)
123

= 1
56

7
8937 (897 .! − ;7 )

∇-. ! =

1
12<

.(!)
1
12=

.(!)
⋮

1
12?

.(!)

Loops over the entire training set.



“Stochastic” Gradient Descent
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!"#$% = !'())#"% − α∇-.(!)

1.(!)
123

= 4536 (456 .! − 86)

∇-. ! =

1
129

.(!)
1
12:

.(!)
⋮

1
12<

.(!)
1.(!)
123

= 1
>?

6
4536 (456 .! − 86 )

“Batch” Gradient Descent

i is randomly selected.



• Mini-Batch Gradient Descent: Something between Batch 
Gradient Descent and Stochastic Gradient Descent. Still 
very stochastic for small batch sizes.
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b

y

x0=1

! = # + %& '& + %( '( +….+ %+ '+
=%, ', + %& '& + %( '( +….+ %+ '+
=-../

012312 = 4 !

5 ! = 1
1 + 789



Cost Function
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! " = − %
& ∑()%& [+(log /0( ." + 1 − +( log 1 − /0( ."

4!(")
478

= 1
9:

(
/08( ( ;+( − +( )



XOR Problem:

Slides are from Goodfellow, et.al for “Deep Learning” Book



XOR Problem:
What can we do?

• Apply linear models not to input x, but to a transformed 
input ! " , where ! is a nonlinear transformation.
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XOR Problem:
What can we do?

• Multilayer Neural Network (AKA Deep Learning):
– The strategy is to learn ! as well

"#= ! $,&' .&)

Up until now we had: "#=$.&
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XOR Problem:
What can we do?

• Multilayer Neural Network (AKA Deep 
Learning):
– The strategy is to learn ! as well

"#= ! $,&' .&)

Up until now we had: "#=$.&
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Multilayer Neural Network (AKA Deep 
Learning)

• Logistic unit              Neuron Model

• Parameters              weights

• Output function              Activation function 
64



Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Good News

A Feedforward Neural Network with one hidden 
layer can represent and approximate any

function to an arbitrary degree of accuracy.

This is called Universal Approximation 
Theorem.
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Good News

• Deeper networks are much more powerful than shallow 
networks.

• Shallow network may need exponentially more width 
(neurons in a layer) to implement the same function.

66

Eldan, Ronen, and Ohad Shamir. "The power of depth for feedforward neural 
networks." Conference on Learning Theory. 2016.
J. Hastad. Almost optimal lower bounds for small depth circuits. ACM 
symposium on Theory of computing,. ACM, 1986



Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Bad News
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Bad News
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Complexity Classes
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P: Can be solved in polynomial time.



Complexity Classes
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 

NP



Complexity Classes
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 
NP-Complete: The hardest NP problems. 
NP-Hard: At least as hard as the hardest NP problem.

NP
NP-Complete

NP-Hard



Complexity Classes:
One Million Dollar Question!
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 
NP-Complete: The hardest NP problems. 
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P=NP
?



Complexity Classes:
One Million Dollar Question!
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 
NP-Complete: The hardest NP problems. 
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P≠NP many believe 



Stochastic Gradient Descent

• my_model.compile(loss='categorical_crossen
tropy', optimizer='sgd', 
metrics=['accuracy'])

• my_model.fit(X_train, Y_train, epochs=50, 
batch_size=10, verbose=2)
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Bad News
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Universal Approximation Theorem says that a large 
enough network can approximate any function.

But it doesn’t say how to train the network or learn 
those parameters to approximate the desired 
function. 
And it says nothing about the architecture and size 
of the network.
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Training Data Test 
Data

Train the model using this data for different h values.

Test the trained 
model with optimal h

using this
Dev 
Data

Take the model with h value that 
performs the best on this data.



• Training set: Which you run your learning algorithm on.

• Development set (AKA Validation set): Which you use to 
tune parameters, select features, and make other decisions 
regarding the learning algorithm. 

• Test set: which you use to evaluate the performance of the 
algorithm, but not to make any decisions regarding what 
learning algorithm or parameters to use.
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Design Process and Cycle for Machine 
Learning
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