Applied Artificial Intelligence

Session 15: Exam Review

Fall 2018
NC State University
Lecturer: Dr. Behnam Kia

Course Website: https://appliedai.wordpress.ncsu.edu/

What is an AI problem?

- If the problem is described by a set of formal mathematical rules (coming from Math, Physics, Chemistry, Biology, etc.), and there are known methods to solve it, develop a conventional computer program and solve it. Usually this is not an AI problem - unless it has exponential complexity.

$$
R I(t)+L \frac{d I(t)}{d t}+V(0)+\frac{1}{C} \int_{0}^{t} I(\tau) d \tau=V(t)
$$

- If there is no formal matnematical description to the problem, but the problem is easy for humans to solve (intuitively), then this is an AI problem.

What is Artificial Intelligence

- Artificial intelligence "tries" to mimic human intelligence.
- So far Al methods have been problemspecific, and we have no general-purpose, human-like General Al system.
- In this course we focus on these problemspecific Al methods, also known as Narrow AI.

New Additions to Al (Machine Learning) Problems

- Extracting knowledge from Big Data
- And usually there is no formal, solution.

- Solving dynamic and varying problems.
- The static version of the problem may or may not have a formal solution. But when the problem changes, so should the solution. This is not trivial.

Al Problems

- Problems simple for humans, but not for computers.
- Extracting knowledge from Big Data.
- Solving dynamic, varying problems.

Artificial Intelligence

Picture from NVIDIA's deep learning institute

What you can expect from this course?

At the end of the semester you will:

- know what an Al problem is and what is not!
- learn the basic foundations of deep learning and how to apply it to AI problems.
- gain basic hands-on experience with Al development tools and software.
- get enough experience, knowledge, and confidence to pursue on your own and learn more advanced topics.

Rationalism

- Mind is a reasoning machine.
- It is equipped with knowledge, and with a reasoning engine it deduces new knowledge or solutions.
- So to create Al we need:
- Knowledge representation.
- A reasoning engine.

The Empiricists

- Mind is a learning machine!
- Empiricism emphasizes the role of experience, discounts the value of a priori reasoning.
- So to create Al we need:
- Learning algorithms.
- A lot of data.

Machine Learning Flowchart (Which Follows Scientific Method)

Scientific Method

Machine Learning: Training Model with Data

Training Data: $\left(x_{\dot{j}} y_{i}\right), i=1,2,3, \ldots, N$
x is called feature, y is label.

How to Adjust Parameters?

- This is an optimization problem to find parameter values, P^{*}, that minimizes the error.

$$
P^{*}=\operatorname{argmin}_{P} \sum_{\text {Trainingset }} \operatorname{Error}(x, y, y)
$$

Another common way to say this is shown below, where J is cost function

$$
P^{*}=\operatorname{argmin}_{P} J(P)
$$

Underfitting and Overfitting

Degree 15

Train the model using this

Test the trained model using this
$\left[\begin{array}{l}\text { Linear Regression } \\ \text { SVM } \\ \text { Naïve Bayes }\end{array}\right.$

Feedforward multilayer networks
Convolutional Network
Recurrent Neural Network
LSTM
GRU

On the Limitation of the Models

- "All models are wrong but some are useful1"

${ }^{1}$ Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201-236.

On the Limitation of the Models

- "Models have limitations, stupidity does not!"

${ }^{1}$ Rodriguez, A. (2010) Arizona State University, "Linear System Theory", course notes.

On the Limitation of the Models

- "Models have limitations, stupidity does not!"

${ }^{1}$ Rodriguez, A. (2010) Arizona State University, "Linear System Theory", course notes.

Train the model using this data for different h values.

Take the model with h value that performs the best on this data.

Probability and Statistics

Random Variable

- A random variable is a variable that takes different possible outcomes of a random experiment.
- Random variable can be discrete or continuous.

Probability Distribution Functions

- Probability distribution function is a description of how likely a random variable or a set of variables is to take on each of its possible states.

Cat's weight

Conditional Probability

$\mathrm{P}(y \mid x)$

Bayes Rule

Example

- Imagine you are designing a filter for spam emails. And from training data (you have lots of labeled good emails(nicknamed ham) and lots of spam emails labeled spam). You have derived a probabilistic model P(email text | spam) and another probabilistic model P(email text | ham).
- You receive a new email, new_email, that you don't know whether it is spam or a good email. And you have no prior knowledge about the probability of emails being spam or ham. Your probability models say that:
$P($ new_email| spam) $=0.4$
$P($ new_email |ham) $=0.6$
How your probabilistic system should label and classify this new_email in order to minimize the error rate?
- $P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
$P($ spam |new_email) $=P($ new_email |spam) $P($ spam $) / P($ new_email $)$ $P($ ham |new_email $)=P($ new_email |ham $) P($ ham $) / P($ new_email $)$
- $P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
$P($ spam |new_email) $=P($ new_email |spam) $P($ spam $) / P($ new_email $)$ $P($ ham |new_email) $=P($ new_email |ham) $P($ ham $) / P($ new_email $)$
$P($ spam \mid new_email $)=0.4^{*} P($ spam $) / P($ new_email $)$
$P($ ham \mid new_email $)=0.6 * P($ ham $) / P($ new_email $)$
$\mathrm{P}\left(\right.$ spam |new_email) $=0.4^{*} 0.5 / \mathrm{P}($ new_email $)$

- $P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
$\mathrm{P}($ spam |new_email) $=\mathrm{P}($ new_email |spam) $\mathrm{P}($ spam $) / \mathrm{P}($ new_email $)$ $P($ ham |new_email) $=P($ new_email |ham) $P($ ham $) / P($ new_email $)$
$P($ spam \mid new_email $)=0.4^{*} P($ spam $) / P($ new_email $)$
$P($ ham \mid new_email $)=0.6^{*} P($ ham $) / P($ new_email $)$
$P\left(\right.$ spam |new_email) $=0.4^{*} 0.5 / P($ new_email)

- $P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
$\mathrm{P}($ spam |new_email) $=\mathrm{P}($ new_email |spam) $\mathrm{P}($ spam $) / \mathrm{P}($ new_email $)$
$P($ ham |new_email) $=P($ new_email |ham) $P($ ham $) / P($ new_email $)$
$P\left(\right.$ spam |new_email) $=0.4^{*} P($ spam $) / P($ new_email $)$
$P($ ham \mid new_email $)=0.6^{*} P($ ham $) / P($ new_email $)$
$P($ spam |new_email $)=0.4^{*} 0.5 / P($ new_email $) \quad P($ spam $)=p($ spam $)=0.5$
$P\left(\right.$ ham |new_email) $=0.6^{*} 0.5 / P($ new_email $)$
Error Probability

Example

- Imagine you are designing a filter for spam emails. And from training data (you have lots of labeled good emails(nicknamed ham) and lots of spam emails labeled spam). You have derived a probabilistic model P (email text | spam) and another probabilistic model P (email text | ham).
- You receive a new email, new_email, that you don't know whether it is spam or a good email. Imagine in that day your email was under attack by spammers and 90% of the email you have received that day were spam, $\mathrm{P}($ spam $)=0.9$. Your probability models say that:
$P($ new_emaill spam $)=0.4$
$P($ new_email |ham) $=0.6$
How your probabilistic system should label and classify this new_email in order to minimize the error rate?
- $P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
$P($ spam |new_email) $=P($ new_email |spam) $P($ spam $) / P($ new_email $)$ $P($ ham |new_email) $=P($ new_email |ham $) P($ ham $) / P($ new_email $)$
- $P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
$P($ spam |new_email) $=P($ new_email |spam) $P($ spam $) / P($ new_email $)$ $P($ ham |new_email) $=P($ new_email |ham) $P($ ham $) / P($ new_email $)$
$P($ spam |new_email $)=0.4^{*} 0.9 / P($ new_email) $P($ ham |new_email $)=0.6^{*} 0.1 / P($ new_email $)$
- $P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
$P($ spam |new_email) $=P($ new_email |spam) $P($ spam $) / P($ new_email $)$ $P($ ham |new_email) $=P($ new_email |ham) $P($ ham $) / P($ new_email $)$
$P\left(\right.$ spam |new_email) $=0.4^{*} 0.9 / P$ (new_email) $P($ ham |new_email $)=0.6^{*} 0.1 / P($ new_email $)$

P(spam |new_email) $=0.36 / P($ new_email $)$
$P($ ham |new_email $)=0.06 / P($ new_email $)$
Error Probability

Naïve Bayes Rule

$$
\begin{aligned}
p\left(y \mid x_{1}, x_{2}, \ldots, x_{k}\right) & =\frac{p\left(x_{1}, x_{2}, \ldots, x_{k} \mid y\right) p(y)}{p(X)} \\
& \approx \frac{p\left(x_{1} \mid y\right) p\left(x_{2} \mid y\right) \ldots p\left(x_{k} \mid y\right) p(y)}{p(X)}
\end{aligned}
$$

Naïve Bayes Rule

We have assumed that features x_{1}, x_{2}, \ldots, and x_{k} are conditionally independent given y

$$
p\left(x_{1}, x_{2}, \ldots, x_{k} \mid y\right) \approx p\left(x_{1} \mid y\right) p\left(x_{2} \mid y\right) \ldots p\left(x_{k} \mid y\right)
$$

Linear Algebra

Vectorized Gradient Descent in 2D

$$
\begin{aligned}
& W_{\text {next }}=W_{\text {current }}-\alpha \nabla_{W} J(W) \\
& \frac{\partial J(W)}{\partial w_{j}}=\frac{1}{m} \sum_{i} x_{p j}^{i}\left(x_{p}^{i} . W-y^{i}\right) \\
& \nabla_{W} J(W)=\frac{1}{m} X_{p}^{T} .\left(X_{p} \cdot W-y\right)
\end{aligned}
$$

Manifold Assumption (Manifold Hypothesis)

- Manifold Assumption: Real-world high-dimensional data sets lie close to a much lower-dimensional manifold.
- Manifold is a connected subset of a higher dimensional space. (rough definition)

Dimension Reduction

- Linear Algebra provides many techniques, including Principal Component Analysis, for dimension reduction.
- Many of these techniques are implemented in Python Modules (e.g. in scikit-learn).

Principal Component Analysis (PCA)

- PCA is the most common dimension reduction algorithm.
- There are many other dimension reduction algorithms as well.

We have Regression Problems, and we have Classification Problems.

Linear Models:

- Linear Regression
- Logistic Regression

Linear Regression Model: House Prices

Input: x (the size of house)
Target: y (the price of the house), $\mathrm{y} \in R$
Linear Model: $\hat{y}=w_{0} x_{0}+w_{1} x_{1}$

$$
\hat{y}=X . W
$$

where:

$$
\begin{aligned}
& x_{p}=\left[1, x_{1}\right] \\
& W=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]
\end{aligned}
$$

House Prices
 Mean Squared Error as Cost Function

The Problems of the Analytical Method

$$
\begin{aligned}
& W_{\text {optimal }}=\underset{W}{\operatorname{argmin}} \mathrm{~J}(\mathrm{~W}) \\
& \mathrm{J}(\mathrm{~W})=\frac{1}{2 n} \sum_{i}\left(W^{T} \cdot x_{p}^{i}-y^{i}\right)^{2}
\end{aligned}
$$

$$
\frac{\partial J(W)}{\partial W}=0 \longrightarrow \mathrm{~W}_{\text {optimal }}=\left(X_{p}^{T} \cdot X_{p}\right)^{-1} \cdot X_{p}^{T} \cdot \mathrm{y}
$$

See proof at: The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman, Page 12, and pages 44-45

Gradient Descent

W

Gradient Descent

W

Gradient Descent

w

Gradient Descent

w

Gradient Descent

w

Gradient Descent

W

Gradient Descent

W

Gradient Descent

W

How to Formulate Gradient Descent?

For simplicity we start from 1-D w, then will extend the concepts to 2-D w's.
$w_{\text {next }}=w_{\text {current }}-\alpha \frac{\partial J(w)}{\partial w}$
α is learning rate.

W

Vectorized Gradient Descent in 2D

$$
\begin{aligned}
& W_{\text {next }}=W_{\text {current }}-\alpha \nabla_{W} J(W) \\
& \frac{\partial J(W)}{\partial w_{j}}=\frac{1}{m} \sum_{i} x_{p j}^{i}\left(x_{p}^{i} . W-y^{i}\right) \\
& \nabla_{W} J(W)=\frac{1}{m} X_{p}^{T} .\left(X_{p} \cdot W-y\right)
\end{aligned}
$$

"Batch" Gradient Descent

$$
W_{\text {next }}=W_{\text {current }}-\alpha \nabla_{W} J(W)
$$

$$
\begin{aligned}
& \nabla_{W} J(W)=\left[\begin{array}{c}
\frac{\partial}{\partial w_{0}} J(W) \\
\frac{\partial}{\partial w_{1}} J(W) \\
\vdots \\
\frac{\partial}{\partial w_{k}} J(W)
\end{array}\right] \\
& \frac{\partial J(W)}{\partial w_{j}}=\frac{1}{m} \sum_{i} x_{p j}^{i}\left(x_{p}^{i} \cdot W-y^{i}\right)
\end{aligned}
$$

Loops over the entire training set.

"Stochastic" Gradient Descent

$$
W_{\text {next }}=W_{\text {current }}-\alpha \nabla_{W} J(W)
$$

- Mini-Batch Gradient Descent: Something between Batch Gradient Descent and Stochastic Gradient Descent. Still very stochastic for small batch sizes.

$$
\begin{aligned}
y & =b+w_{1} x_{1}+w_{2} x_{2}+\ldots .+w_{n} x_{n} & & \text { output }=s(y) \\
& =w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n} & & \\
& =X_{p} . W & & S(y)=\frac{1}{1+e^{-y}}
\end{aligned}
$$

Cost Function

$$
\begin{gathered}
J(W)=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{i} \log \left(x_{p}^{i} . W\right)+\left(1-y^{i}\right) \log \left(1-x_{p}^{i} . W\right)\right. \\
\frac{\partial J(W)}{\partial w_{j}}=\frac{1}{m} \sum_{i} x_{p j}^{i}\left(\widehat{y^{i}}-y^{i}\right)
\end{gathered}
$$

XOR Problem:

XOR is not linearly separable

Figure 6.1, left
Slides are from Goodfellow, et.al for "Deep Learning" Book

XOR Problem: What can we do?

- Apply linear models not to input x, but to a transformed input $\varphi(x)$, where φ is a nonlinear transformation.

XOR Problem: What can we do?

- Multilayer Neural Network (AKA Deep Learning):
- The strategy is to learn φ as well
$\hat{y}=\varphi\left(x, w_{\varphi}\right) \cdot w_{C}$

Up until now we had: $\hat{y}=x$.w

XOR Problem: What can we do?

- Multilayer Neural Network (AKA Deep Learning):
- The strategy is to learn φ as well
$\hat{y}=\varphi\left(x, w_{\varphi}\right) . w_{C}$

Up until now we had: $\hat{y}=x$.w

Multilayer Neural Network (AKA Deep Learning)

- Logistic unit \longrightarrow Neuron Model
- Parameters \longmapsto weights

- Output function \longmapsto Activation function

Multilayer Feedforward Neural Network (Deep Feedforward Networks) Good News

A Feedforward Neural Network with one hidden layer can represent and approximate any function to an arbitrary degree of accuracy.

This is called Universal Approximation Theorem.

Multilayer Feedforward Neural Network (Deep Feedforward Networks)
 Good News

- Deeper networks are much more powerful than shallow networks.
- Shallow network may need exponentially more width (neurons in a layer) to implement the same function.

Eldan, Ronen, and Ohad Shamir. "The power of depth for feedforward neural networks." Conference on Learning Theory. 2016.
J. Hastad. Almost optimal lower bounds for small depth circuits. ACM symposium on Theory of computing,. ACM, 1986

Multilayer Feedforward Neural Network (Deep Feedforward Networks) Bad News

Training a 3-Node Neural Network is NP-Complete

Avrim L. Blum and Ronald L. Rivest*

MIT Laboratory for Computer Science
Cambridge, Massachusetts 02139
avrim@theory.lcs.mit.edu
rivest@theory.Ics.mit.edu

4.1 Introduction

One reason for the recent surge in interest in feed-forward neural networks is the development of the "back-propagation" training algorithm [14]. The ability to train large multi-layer networks is essential for utilizing neural networks in prac-

Multilayer Feedforward Neural Network (Deep Feedforward Networks) Bad News

Training a 3-Node Neural Network is NP-Complete

Avrim L. Blum and Ronald L. Rivest*

MIT Laboratory for Computer Science
Cambridge, Massachusetts 02139
avrim@theory.lcs.mit.edu
rivest@theory.Ics.mit.edu

4.1 Introduction

One reason for the recent surge in interest in feed-forward neural networks is the development of the "back-propagation" training algorithm [14]. The ability to train large multi-layer networks is essential for utilizing neural networks in prac-

Complexity Classes

P: Can be solved in polynomial time.

Complexity Classes

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved in-deterministic polynomial time. (informal definition) No polynomial solution yet.

Complexity Classes

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved in-deterministic polynomial time. (informal definition) No polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: At least as hard as the hardest NP problem.

Complexity Classes: One Million Dollar Question!

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved in-deterministic polynomial time. (informal definition) No polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: As hard as the hardest NP problem.

$$
P \stackrel{?}{=} N P
$$

Complexity Classes: One Million Dollar Question!

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved in-deterministic polynomial time. (informal definition) No polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: As hard as the hardest NP problem.

$\mathbf{P} \neq \mathbf{N P}$ many believe

Stochastic Gradient Descent

- my_model.compile(loss='categorical_crossen tropy', optimizer='sgd', metrics=['accuracy'])
- my_model.fit(X_train, Y_train, epochs=50, batch_size=10, verbose=2)

Multilayer Feedforward Neural Network (Deep Feedforward Networks) Bad News

Universal Approximation Theorem says that a large enough network can approximate any function.

But it doesn't say how to train the network or learn those parameters to approximate the desired function.
And it says nothing about the architecture and size of the network.

Train the model using this data for different h values.

Take the model with h value that performs the best on this data.

- Training set: Which you run your learning algorithm on.
- Development set (AKA Validation set): Which you use to tune parameters, select features, and make other decisions regarding the learning algorithm.
- Test set: which you use to evaluate the performance of the algorithm, but not to make any decisions regarding what learning algorithm or parameters to use.

Design Process and Cycle for Machine Learning

