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In this session we will:

• Look at a single neuron (Logistic Regression 
Unit)

• And discuss some of its limitations in learning
• And we go from a single neuron to a network 

of neurons in order to solve the problem
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AND Gate
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Implement an AND Gate Based Using a 
Logistic Regression Classifier
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Training Data 
x_train= [[0,0], [0,1], [1,0],[1,1]]
y_train=[   0   ,   0  ,     0 ,    1 ]



Implement an XOR Gate Based Using a 
Logistic Regression Classifier
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XOR Problem:
What can we do?
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XOR Problem:
What can we do?

• Apply linear models not to input x, but to a transformed 
input ! " , where ! is a nonlinear transformation.
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XOR Problem:
What can we do?

• Apply linear models not to input x, but to a transformed 
input ! " , where ! is a nonlinear transformation.

• But how to choose !?
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XOR Problem:
What can we do?

• Start to use a very generic !.
• For example, start to use all possible nonlinear 

combinations of features up to some order:
#$#%, #$%, #%%, #$'…

If we have tens of features, there would be:
– hundreds of quadratic terms
– And thousands of cubic terms
– …

Too many parameters to learn, and not enough data. 
Overfitting can happen. 9



XOR Problem:
What can we do?

• Manually design the transformations, e.g.:
– !" sin !&, !' !"

• This is an ad hoc, domain specific effort.
• Very hard, requires decades of human effort for each 

task.  
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XOR Problem:
What can we do?

• Multilayer Neural Network (AKA Deep Learning):
– The strategy is to learn ! as well

"#= ! $,&' .&)

Up until now we had: "#=$.&
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Multilayer Neural Network (AKA Deep 
Learning)

• Logistic unit              Neuron Model

• Parameters              weights

• Output function              Activation function 
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XOR Problem:
Multilayer Neural Network Solution

Slides are from Goodfellow, et.al for “Deep Learning” Book
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XOR Problem:
Multilayer Neural Network Solution
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Good News
& 

Bad News
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Good News

A Feedforward Neural Network with one hidden 
layer can represent and approximate any

function to an arbitrary degree of accuracy.

This is called Universal Approximator Theorem.
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Good News

• Deeper networks are much more powerful than shallow 
networks.

• Shallow network may need exponentially more width 
(neurons in a layer) to implement the same function.
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Bad News
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Multilayer Feedforward Neural Network 
(Deep Feedforward Networks)

Bad News
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Universal Approximator Theorem says that a large 
enough network can approximate any function.

But it doesn’t say how to train the network or learn 
those parameters.


