
NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

	
	

PY-599 (Fall 2018): Applied Artificial Intelligence
Logistic Regression
& Homework Assignment

Deadline to Submit: Tuesday 3:00 PM, Oct 9th (right before the Tuesday session)

Submission Method: Please share your Colab notebook
Group Submission is allowed

We talked about regression problems and regression models in the class. A

regression problem is a problem where the goal is to predict continuous (real-valued)
output from the inputs. A regression problem is a supervised learning problem in the
sense that we are given a set of examples, or training data, (x1,y1), (x2,y2), (x3,y3),…,
(xm,ym), where x is an example input, and y is the actual continuous output. Our goal in
regression modeling is to come up with a model that fits this training data, and second,
generalizes beyond this specific data set and predicts the outputs of new unseen input
data as well.

We introduced linear regression models to map the input features to the
continuous output:
𝑦 = 𝑥!.𝑊 (1)
𝑥! is a (1,k+1) row vector that contains the inputs, W is a (k+1,1) column vector that
contains the model parameters, and 𝑦 is a continuous output that our model predicts. k is
the number of features, or in other words, the number of inputs to the model. In linear
regression model we have a bias parameter as well. For a more compact notation, we
included an extra feature x0 that is always 1, and we consider the bias parameter as
another multiplicative parameter that is multiplied to this additional feature. That is how
we ended up with a (1,k+1) row vector for the inputs, k of them are the inputs, and one is
the constant feature 1. In the house-price example discussed in the class, the x input was:
xp=[1,x1]
As you see the first feature is 1, and the second feature is the size of the house.
Note that in Eq. (1) we used 𝑦 notation instead of y itself to emphasize the fact that our
model predicts or estimates the outputs, and theses estimates can be different from the
actual outputs y. Our aim in training the model is to come up with a parameter vector W
that minimizes the error; the difference, between the estimated outputs 𝑦 and the actual
outputs y that we get from the labeled training data. In the class we introduced mean
squared error as a measure of error, and then we found a parameter set W that minimized
this cost function. We analytically solved this optimization problem using the Normal
equation, and then we followed a gradient descent method to solve the same optimization
problem.

How about the classification problems? What if the problem is to estimate which class a
given input belongs to, instead of producing a continuous output. We can modify the

NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

linear regression models to solve the classification problems as well. We call the resulting
model the Logistic Regression Model.
In Logistic regression, similar to linear regression, we are given a set of training data,
(x1,y1), (x2,y2), (x3,y3),…, (xm,ym). But this time y values are the class labels. They are not
continuous, they are discrete-valued outputs that say to which class the corresponding
inputs belong. Here for simplicity we study two-class problems, where the examples
belong to class 0 or class 1. This is similar to two of our previous homeworks, where we
designed Naïve Bayes classifiers to determine whether a review is positive or negative,
and we designed a perceptron to determine which class the data points belong to (The
Genetic Algorithm plus perceptron problem).

Logistic Regression for Classification

We already designed a model for linear regression:
𝑦 = 𝑥!.𝑊
A simple strategy to adapt this model to classification problems can be adding a step
function, a threshold function, to the output of this linear model. This step function would
map the continuous outputs of the linear models to two levels, 0 and 1, representing and
symbolizing two classes. We used this trick in homework 2.

𝑜𝑢𝑡𝑝𝑢𝑡 = 1 𝑖𝑓 𝑥!.𝑊 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Fig. 1: We use a step function to produce a binary label

We used this simple trick in homework 2, and indeed it enabled us to classify those two
classes of datapoints from each other. But there are challenges that come with this output
function. For example, this output function is not differentiable, and therefore we cannot
use gradient descent-based optimization methods to train such a model. To address this
issue, people started to suggest different smooth versions of step function. Logistic
function, also known as sigmoid function, is a famous function that is smooth and
differentiable, and fits the needs of our problem. The sigmoid function is defined as:

NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

𝑆 𝑧 = !
!!!!!

 (3)
 Figure 2 plots the outputs of sigmoid function S(z) for different input values z:

Fig. 2: The sigmoid function

You may or may not find an implementation of a Sigmoid function in a Python module.
But it is extremely easy to write your own Sigmoid function to implement it. You just
need to write a code for Eq. (3) (and define it as a function in Python).

It is important to notice that the sharp step function in Fig. 1 gives a definite binary label
of 0 or 1 to each input, whereas the sigmoid function gives a number between 0 and 1.
There are multiple implications for this observation:

- One can interpret the output of the sigmoid function when (𝑥!.𝑊) is given as the
input, as the probability that the input 𝑥! belongs to class 1. In other words, the
sigmoid function gives 𝑃(𝑦 = 1|𝑥!,𝑊) . 𝑃(𝑦 = 1|𝑥!,𝑊) is the conditional
probability of output label being 1 given the input 𝑥! and model parameters W.
We are given 𝑥!, and we like to estimate the probability of output being 1 for the
given input. Note that the conditional probability depends on the model
parameters W as well. Different model parameters create different conditional
probabilities for the output label. That is why the conditional probability of output
label being 1 depends on W as well.

- Since we have just two possible output labels, 1 and 0, and the output must be 0
or 1, then we can write 𝑃 𝑦 = 0 𝑥!,𝑊 = 1− 𝑃(𝑦 = 1|𝑥!,𝑊).

- So now we have two conditional probabilities for the output labels, 𝑃(𝑦 =
1|𝑥!,𝑊), which model directly gives us, and 𝑃(𝑦 = 0|𝑥!,𝑊) that we obtain by
subtracting 𝑃 𝑦 = 1 𝑥!,𝑊 from 1 (the total probability). As a result, the process
of picking a label has come down to looking at these two probabilities, and
picking the label that has a higher probability given the input and the model
parameters.

𝑜𝑢𝑡𝑝𝑢𝑡 = 1 𝑖𝑓 𝑃 𝑦 = 1 𝑥!,𝑊 ≥ (𝑦 = 0|𝑥!,𝑊)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

Equation 4 can be simplified to Eq. (5), because in binary classifications with just
two possible labels we do not need to calculate 𝑃(𝑦 = 0|𝑥!,𝑊) as well, we just
need to check whether 𝑃(𝑦 = 1|𝑥!,𝑊) is greater than 0.5 or not. If it is, the
output is 1, otherwise 𝑃(𝑦 = 0|𝑥!,𝑊) is going to be greater than 0.5 and we
should choose 0 as the output label.

𝑜𝑢𝑡𝑝𝑢𝑡 = 1 𝑖𝑓 𝑃 𝑦 = 1 𝑥!,𝑊 ≥ 0.5
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

- And yes, this is a Discriminative model in the sense that it directly tries to labels

the inputs without estimating any intermediate probability distribution such as
joint probability distribution between inputs and outputs, or conditional
probability of inputs given the output labels. Those models that try to model the
data and the distribution between the inputs and outputs are called Generative
models.

- Roughly speaking, a model that produces a probability (a continuous value) as a
measure of confidence in which label is the correct output label, is easier to train
than a model that produces a definite 0/1 outputs. In former case, we have a
continuous, smooth path between two cases that we can use in order to train the
model and shift and adjust the outputs, whereas in the latter case, there outputs
and system behavior is discrete and it is harder to gradually adjust and shift the
system parameter.

-
Training Logistic Regression Model
 So we now have a logistic regression model that receives inputs, and according to
its model parameters produces a conditional probability function that gives a degree
of belief in whether the inputs belongs to class 0 or 1. And we choose the class label
that comes with a higher conditional probability.
 But the remaining question is how to pick and choose the model parameter W
that minimizes the error of the logistic regression model in classification. Therefore
we have an optimization problem in hand, and we need two things to solve this
optimization problem, 1) a suitable cost function to represent how well or poorly the
model is performing the classification task, and 2) an optimization technique to
minimize the cost function by adjusting the model parameters W.

In homework 2 we used the number of misclassifications as an error (cost) function.
That cost function was adequate for Genetic algorithm technique that we used for
optimization, but not for the gradient-based methods. The number of
misclassifications, as the name suggests, gives a discrete-valued, integer numbers as a
measure of error. We cannot apply gradient-based methods to such a discrete-valued
function. In gradient-based methods we need a smooth, differentiable cost function.
A good solution can be to directly use the continuous-valued conditional
probabilities, instead of 0 and 1 outputs obtained from Eq. (5), and calculate an cost
function using our good old mean squared error function:

𝐽 𝑊 =
1
2𝑚 𝑆 𝑥!! .𝑊 − 𝑦! !

!

 (6)

NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

 =
1
2𝑚

1

1+ 𝑒!(!!
! .!)

− 𝑦!
!

!

The good thing about this mean squared error function is that it is smooth and
differentiable. However, Eq. (6) cost function is not convex any more because of the
additional complex, exponential function inside the parenthesis, and as a result J(W)
contains many local minimums. Therefore, the regular gradient descent technique is
going to find and return back the local minimum points, not the global, optimal solution.
One might suggest using the stochastic gradient descent in order to escape from these
local minimums. Although this is doable, there is an easier, more practical approach to
applying gradient descent methods in logistic regression. Instead of using mean squared
error let us use a different error function, cross entropy error function. For simplicity of
notation let us pick up the old notation for the output 𝑦 = 𝑆 𝑥!! .𝑊 . Cross entropy
function says that the cost of producing 𝑦 when the actual output is y is:

𝑐𝑜𝑠𝑡 𝑦,𝑦 = − log 𝑦 𝑖𝑓 𝑦 = 1
− log 1− 𝑦 𝑖𝑓 𝑦 = 0 (7)

Note that y is the class label; therefore it is either 0 or 1. Let us examine this cost function
to see what it does. Figure 3 (top panel) plots 𝑐𝑜𝑠𝑡 𝑦,𝑦 for different 𝑦 values when y=1,
and the bottom panel shows the cost function for different 𝑦 values when y=0.

NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

Fig. 3: Top Panel: 𝑐𝑜𝑠𝑡 𝑦,𝑦 when y=1 evaluated for different 𝑦 values. Bottom Panel:

𝑐𝑜𝑠𝑡 𝑦,𝑦 when y=0 evaluated for different 𝑦 values
Couple of important notes:

- Remember that 𝑦, as a probability function, takes values between 0 and 1 because
𝑦 = 𝑆 𝑥!! .𝑊 . As a result, we evaluate the cost function for these values of 𝑦.

- The top panel shows the cost function when the correct label is 1, y=1. In this case
the model is better to predict 1 with a high probability, otherwise it is going to be
penalize based on how off 𝑃 𝑦 = 1 𝑥!,𝑊 is. When the logistic regression
model’s output is almost 1, 𝑦 → 1, meaning that the model is very confident that
the label is 1, then the cost of this prediction is almost 0, 𝑐𝑜𝑠𝑡 𝑦,𝑦 → 0. This
makes sense because the hypothesis is correct and there should be no cost for this
prediction. On the other extreme case, if the model is very confident that the label
is 0 by producing a very small 𝑃 𝑦 = 1 𝑥!,𝑊 , meaning that 𝑃 𝑦 = 0 𝑥!,𝑊 is
very high, there is an extremely high cost for this very wrong and confident
prediction.

- The cost function for y=0 is the same as the cost function for y=1 when it is
flipped horizontally. So both costs functions penalize the model in the same way
depending on how off the predicted probabilities (predictions) are from the
correct label. When y=0 the model is better to be confident that the label is 0 by
predicting 𝑦 as close to 0 as possible, 𝑦 → 0, otherwise it is going to be penalized
based on Fig. 3 bottom.

Equation 7 cost function can be rewritten in a simpler, more compact way:
 𝑐𝑜𝑠𝑡 𝑦,𝑦 = −𝑦 log 𝑦 − (1− 𝑦) log 1− 𝑦 (8)
Note that y can always take just two values, 0 and 1. When y=0, the Eq. 8 cost function
will become:
 𝑐𝑜𝑠𝑡 𝑦,𝑦 = −𝑦 log 𝑦 − (1− 𝑦) log 1− 𝑦
which is the same as Eq. (7), and when y=1, then:
𝑐𝑜𝑠𝑡 𝑦,𝑦 = −𝑦 log 𝑦 − (1− 𝑦) log 1− 𝑦
and this is again what the Eq. (6) says.

NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

Equation (8) gives the cost function (or the error function) for just one instance of the
training data. To obtain the cost function for the entire training data, we need to find the
average cost function across the entire training data set:

𝐽 𝑊 =
1
𝑚 𝑐𝑜𝑠𝑡 𝑦! ,𝑦!

!

 (9)

 =
1
𝑚 (−𝑦! log 𝑦! − (1− 𝑦!) log 1− 𝑦!)

!

 =
1
𝑚 (−𝑦! log

1

1+ 𝑒!(!!
! .!)

− (1− 𝑦!) log 1−
1

1+ 𝑒!(!!
! .!)

)
!

We have the cost function J(W), we need to find optimal model parameters W to
minimize this cost function. You might be wondering what the reason or logic was
behind choosing sigmoid (Logistic) function as the output function (also called an
activation function) and cross entropy as the cost function. The answer is that the
resulting Eq (9) function is a convex function, therefore we can safely apply gradient
descent methods to find the optimal W, and equally interesting, when we calculate the
partial derivates of Eq. (9) with respect to model parameters wj, we will obtain a very
familiar equation:
𝜕
𝜕𝑤!

𝐽 𝑊 =
1
𝑚 𝑥!"! 𝑦! − 𝑦!

!

which is the same formula for linear regression models! Of course 𝑦! has different
definitions in linear regression and in Logistic regression; in linear regression 𝑦! = 𝑥!! .𝑊
whereas in Logistic regression 𝑦! = !

!!!!(!!
! .!)

 . However, the equations for gradient

descents are exactly the same in terms of 𝑦! ,𝑦!, and 𝑥!"! .
Homework:

In homework 2 we were given a two-class data set:

Fig. 4: A two-class data sets. Reds belong to class 0, and blues belongs to class 1.

NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia

Our aim was to design a classifier to classify class 0 from class 1. We used a simple
perceptron with a step function as the activation function (output function), which
produced 0 or 1. And we used GA to train this perceptron, and find the optimal
parameters that enabled the perceptron to do the classification with minimal error.

In this homework our mission is to design and train a logistic regression classifier to
perform the same task, but this time we like to train the model using gradient descent
methods. As we discussed in this note, we need to choose a proper activation function
and cost function in order to apply the gradient dissent method. We introduced sigmoid
function and cross-entropy cost functions for this purpose.

So here is the plan:

§ Go back to homework 2 and take the same training data set.
§ Define a function for Logistic regression classifier (𝑦 = !

!!!!(!!.!)).
§ In session 11, we solved a linear regression problem and found the optimal model

parameter W, using three different gradient descent methods: batch gradient
descent, stochastic gradient descent, and mini-batch gradient descent. Use these
three methods to train your logistic regression classifier.

 Feel free to use the codes I gave during session 11, or write your own codes.

