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Logistic Regression 
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Deadline to Submit: Tuesday 3:00 PM, Oct 9th (right before the Tuesday session) 

Submission Method: Please share your Colab notebook 
Group Submission is allowed 

 

 
We talked about regression problems and regression models in the class. A 

regression problem is a problem where the goal is to predict continuous (real-valued) 
output from the inputs. A regression problem is a supervised learning problem in the 
sense that we are given a set of examples, or training data, (x1,y1), (x2,y2), (x3,y3),…, 
(xm,ym), where x is an example input, and y is the actual continuous output. Our goal in 
regression modeling is to come up with a model that fits this training data, and second, 
generalizes beyond this specific data set and predicts the outputs of new unseen input 
data as well. 

We introduced linear regression models to map the input features to the 
continuous output: 
𝑦 = 𝑥!.𝑊  (1) 
𝑥! is a (1,k+1) row vector that contains the inputs, W is a (k+1,1) column vector that 
contains the model parameters, and 𝑦 is a continuous output that our model predicts. k is 
the number of features, or in other words, the number of inputs to the model. In linear 
regression model we have a bias parameter as well. For a more compact notation, we 
included an extra feature x0 that is always 1, and we consider the bias parameter as 
another multiplicative parameter that is multiplied to this additional feature. That is how 
we ended up with a (1,k+1) row vector for the inputs, k of them are the inputs, and one is 
the constant feature 1. In the house-price example discussed in the class, the x input was: 
xp=[1,x1] 
As you see the first feature is 1, and the second feature is the size of the house. 
Note that in Eq. (1) we used 𝑦 notation instead of y itself to emphasize the fact that our 
model predicts or estimates the outputs, and theses estimates can be different from the 
actual outputs y. Our aim in training the model is to come up with a parameter vector W 
that minimizes the error; the difference, between the estimated outputs 𝑦 and the actual 
outputs y that we get from the labeled training data. In the class we introduced mean 
squared error as a measure of error, and then we found a parameter set W that minimized 
this cost function. We analytically solved this optimization problem using the Normal 
equation, and then we followed a gradient descent method to solve the same optimization 
problem. 
 
How about the classification problems? What if the problem is to estimate which class a 
given input belongs to, instead of producing a continuous output. We can modify the 
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linear regression models to solve the classification problems as well. We call the resulting 
model the Logistic Regression Model. 
In Logistic regression, similar to linear regression, we are given a set of training data, 
(x1,y1), (x2,y2), (x3,y3),…, (xm,ym). But this time y values are the class labels. They are not 
continuous, they are discrete-valued outputs that say to which class the corresponding 
inputs belong. Here for simplicity we study two-class problems, where the examples 
belong to class 0 or class 1. This is similar to two of our previous homeworks, where we 
designed Naïve Bayes classifiers to determine whether a review is positive or negative, 
and we designed a perceptron to determine which class the data points belong to (The 
Genetic Algorithm plus perceptron problem). 
 
Logistic Regression for Classification 
 
We already designed a model for linear regression: 
𝑦 = 𝑥!.𝑊 
A simple strategy to adapt this model to classification problems can be adding a step 
function, a threshold function, to the output of this linear model. This step function would 
map the continuous outputs of the linear models to two levels, 0 and 1, representing and 
symbolizing two classes. We used this trick in homework 2.  

𝑜𝑢𝑡𝑝𝑢𝑡 = 1   𝑖𝑓  𝑥!.𝑊 > 0
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2) 

 

 
Fig. 1: We use a step function to produce a binary label 

 
We used this simple trick in homework 2, and indeed it enabled us to classify those two 
classes of datapoints from each other. But there are challenges that come with this output 
function. For example, this output function is not differentiable, and therefore we cannot 
use gradient descent-based optimization methods to train such a model. To address this 
issue, people started to suggest different smooth versions of step function. Logistic 
function, also known as sigmoid function, is a famous function that is smooth and 
differentiable, and fits the needs of our problem. The sigmoid function is defined as: 
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𝑆 𝑧 = !
!!!!!

 (3) 
 Figure 2 plots the outputs of sigmoid function S(z) for different input values z: 

 
Fig. 2: The sigmoid function 

 
You may or may not find an implementation of a Sigmoid function in a Python module. 
But it is extremely easy to write your own Sigmoid function to implement it. You just 
need to write a code for Eq. (3) (and define it as a function in Python). 
 
It is important to notice that the sharp step function in Fig. 1 gives a definite binary label 
of 0 or 1 to each input, whereas the sigmoid function gives a number between 0 and 1. 
There are multiple implications for this observation: 

- One can interpret the output of the sigmoid function when (𝑥!.𝑊) is given as the 
input, as the probability that the input 𝑥! belongs to class 1. In other words, the 
sigmoid function gives 𝑃(𝑦 = 1|𝑥!,𝑊) . 𝑃(𝑦 = 1|𝑥!,𝑊)  is the conditional 
probability of output label being 1 given the input 𝑥! and model parameters W. 
We are given 𝑥!, and we like to estimate the probability of output being 1 for the 
given input. Note that the conditional probability depends on the model 
parameters W as well. Different model parameters create different conditional 
probabilities for the output label. That is why the conditional probability of output 
label being 1 depends on W as well.  

- Since we have just two possible output labels, 1 and 0, and the output must be 0 
or 1, then we can write 𝑃 𝑦 = 0 𝑥!,𝑊 = 1− 𝑃(𝑦 = 1|𝑥!,𝑊).  

- So now we have two conditional probabilities for the output labels, 𝑃(𝑦 =
1|𝑥!,𝑊), which model directly gives us, and 𝑃(𝑦 = 0|𝑥!,𝑊) that we obtain by 
subtracting 𝑃 𝑦 = 1 𝑥!,𝑊  from 1 (the total probability). As a result, the process 
of picking a label has come down to looking at these two probabilities, and 
picking the label that has a higher probability given the input and the model 
parameters.   

𝑜𝑢𝑡𝑝𝑢𝑡 = 1             𝑖𝑓  𝑃 𝑦 = 1 𝑥!,𝑊 ≥ (𝑦 = 0|𝑥!,𝑊)
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   

 (4) 
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Equation 4 can be simplified to Eq. (5), because in binary classifications with just 
two possible labels we do not need to calculate 𝑃(𝑦 = 0|𝑥!,𝑊) as well, we just 
need to check whether 𝑃(𝑦 = 1|𝑥!,𝑊) is greater than 0.5 or not. If it is, the 
output is 1, otherwise 𝑃(𝑦 = 0|𝑥!,𝑊) is going to be greater than 0.5 and we 
should choose 0 as the output label. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 1            𝑖𝑓  𝑃 𝑦 = 1 𝑥!,𝑊 ≥ 0.5                      
 0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    

 (5) 

 
- And yes, this is a Discriminative model in the sense that it directly tries to labels 

the inputs without estimating any intermediate probability distribution such as 
joint probability distribution between inputs and outputs, or conditional 
probability of inputs given the output labels. Those models that try to model the 
data and the distribution between the inputs and outputs are called Generative 
models.  

- Roughly speaking, a model that produces a probability (a continuous value) as a 
measure of confidence in which label is the correct output label, is easier to train 
than a model that produces a definite 0/1 outputs. In former case, we have a 
continuous, smooth path between two cases that we can use in order to train the 
model and shift and adjust the outputs, whereas in the latter case, there outputs 
and system behavior is discrete and it is harder to gradually adjust and shift the 
system parameter. 

-  
Training Logistic Regression Model 
       So we now have a logistic regression model that receives inputs, and according to 
its model parameters produces a conditional probability function that gives a degree 
of belief in whether the inputs belongs to class 0 or 1. And we choose the class label 
that comes with a higher conditional probability.    
        But the remaining question is how to pick and choose the model parameter W 
that minimizes the error of the logistic regression model in classification.  Therefore 
we have an optimization problem in hand, and we need two things to solve this 
optimization problem, 1) a suitable cost function to represent how well or poorly the 
model is performing the classification task, and 2) an optimization technique to 
minimize the cost function by adjusting the model parameters W. 
 
In homework 2 we used the number of misclassifications as an error (cost) function. 
That cost function was adequate for Genetic algorithm technique that we used for 
optimization, but not for the gradient-based methods. The number of 
misclassifications, as the name suggests, gives a discrete-valued, integer numbers as a 
measure of error. We cannot apply gradient-based methods to such a discrete-valued 
function. In gradient-based methods we need a smooth, differentiable cost function.  
A good solution can be to directly use the continuous-valued conditional 
probabilities, instead of 0 and 1 outputs obtained from Eq. (5), and calculate an cost 
function using our good old mean squared error function: 

𝐽 𝑊 =
1
2𝑚 𝑆 𝑥!! .𝑊 − 𝑦! !

!
 

 (6) 
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          =
1
2𝑚

1

1+ 𝑒!(!!
! .!)

− 𝑦!
!

!
 

 
The good thing about this mean squared error function is that it is smooth and 
differentiable. However, Eq. (6) cost function is not convex any more because of the 
additional complex, exponential function inside the parenthesis, and as a result J(W) 
contains many local minimums. Therefore, the regular gradient descent technique is 
going to find and return back the local minimum points, not the global, optimal solution. 
One might suggest using the stochastic gradient descent in order to escape from these 
local minimums. Although this is doable, there is an easier, more practical approach to 
applying gradient descent methods in logistic regression. Instead of using mean squared 
error let us use a different error function, cross entropy error function. For simplicity of 
notation let us pick up the old notation for the output 𝑦 = 𝑆 𝑥!! .𝑊 . Cross entropy 
function says that the cost of producing 𝑦 when the actual output is y is: 

𝑐𝑜𝑠𝑡 𝑦,𝑦 = − log 𝑦   𝑖𝑓 𝑦 = 1
− log 1− 𝑦   𝑖𝑓 𝑦 = 0 (7) 

Note that y is the class label; therefore it is either 0 or 1. Let us examine this cost function 
to see what it does. Figure 3 (top panel) plots 𝑐𝑜𝑠𝑡 𝑦,𝑦  for different 𝑦 values when y=1, 
and the bottom panel shows the cost function for different 𝑦 values when y=0.  
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Fig. 3: Top Panel: 𝑐𝑜𝑠𝑡 𝑦,𝑦  when y=1 evaluated for different 𝑦 values. Bottom Panel: 

𝑐𝑜𝑠𝑡 𝑦,𝑦  when y=0 evaluated for different 𝑦 values 
Couple of important notes: 

- Remember that 𝑦, as a probability function, takes values between 0 and 1 because 
𝑦 = 𝑆 𝑥!! .𝑊 . As a result, we evaluate the cost function for these values of 𝑦. 

- The top panel shows the cost function when the correct label is 1, y=1. In this case 
the model is better to predict 1 with a high probability, otherwise it is going to be 
penalize based on how off 𝑃 𝑦 = 1 𝑥!,𝑊  is. When the logistic regression 
model’s output is almost 1,  𝑦 → 1, meaning that the model is very confident that 
the label is 1, then the cost of this prediction is almost 0, 𝑐𝑜𝑠𝑡 𝑦,𝑦 → 0. This 
makes sense because the hypothesis is correct and there should be no cost for this 
prediction. On the other extreme case, if the model is very confident that the label 
is 0 by producing a very small 𝑃 𝑦 = 1 𝑥!,𝑊 , meaning that 𝑃 𝑦 = 0 𝑥!,𝑊  is 
very high, there is an extremely high cost for this very wrong and confident 
prediction.  

- The cost function for y=0 is the same as the cost function for y=1 when it is 
flipped horizontally. So both costs functions penalize the model in the same way 
depending on how off the predicted probabilities (predictions) are from the 
correct label. When y=0 the model is better to be confident that the label is 0 by 
predicting 𝑦 as close to 0 as possible, 𝑦 → 0, otherwise it is going to be penalized 
based on Fig. 3 bottom.  

 
Equation 7 cost function can be rewritten in a simpler, more compact way: 
 𝑐𝑜𝑠𝑡 𝑦,𝑦 = −𝑦 log 𝑦 − (1− 𝑦) log 1− 𝑦  (8) 
Note that y can always take just two values, 0 and 1. When y=0, the Eq. 8 cost function 
will become: 
 𝑐𝑜𝑠𝑡 𝑦,𝑦 = −𝑦 log 𝑦 − (1− 𝑦) log 1− 𝑦  
which is the same as Eq. (7), and when y=1, then: 
𝑐𝑜𝑠𝑡 𝑦,𝑦 = −𝑦 log 𝑦 − (1− 𝑦) log 1− 𝑦  
and this is again what the Eq. (6) says.  



NC State University, PY-599 (Fall 2018): Applied Artificial Intelligence, Lecturer: Dr. Behnam Kia 

Equation (8) gives the cost function (or the error function) for just one instance of the 
training data. To obtain the cost function for the entire training data, we need to find the 
average cost function across the entire training data set: 

𝐽 𝑊 =
1
𝑚 𝑐𝑜𝑠𝑡 𝑦! ,𝑦!

!

 

 (9) 

           =
1
𝑚 (−𝑦! log 𝑦! − (1− 𝑦!) log 1− 𝑦! )

!

 

 

           =
1
𝑚 (−𝑦! log

1

1+ 𝑒!(!!
! .!)

− (1− 𝑦!) log 1−
1

1+ 𝑒!(!!
! .!)

)
!

 

 
We have the cost function J(W), we need to find optimal model parameters W to 
minimize this cost function. You might be wondering what the reason or logic was 
behind choosing sigmoid (Logistic) function as the output function (also called an 
activation function) and cross entropy as the cost function. The answer is that the 
resulting Eq (9) function is a convex function, therefore we can safely apply gradient 
descent methods to find the optimal W, and equally interesting, when we calculate the 
partial derivates of Eq. (9) with respect to model parameters wj, we will obtain a very 
familiar equation: 
𝜕
𝜕𝑤!

𝐽 𝑊 =
1
𝑚 𝑥!"! 𝑦! − 𝑦!

!

 

which is the same formula for linear regression models! Of course  𝑦! has different 
definitions in linear regression and in Logistic regression; in linear regression 𝑦! = 𝑥!! .𝑊 
whereas in Logistic regression  𝑦! = !

!!!!(!!
! .!)

 . However, the equations for gradient 

descents are exactly the same in terms of 𝑦! ,𝑦!, and 𝑥!"! . 
Homework: 

In homework 2 we were given a two-class data set: 

 
Fig. 4: A two-class data sets. Reds belong to class 0, and blues belongs to class 1. 
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Our aim was to design a classifier to classify class 0 from class 1. We used a simple 
perceptron with a step function as the activation function (output function), which 
produced 0 or 1. And we used GA to train this perceptron, and find the optimal 
parameters that enabled the perceptron to do the classification with minimal error.  
 
In this homework our mission is to design and train a logistic regression classifier to 
perform the same task, but this time we like to train the model using gradient descent 
methods. As we discussed in this note, we need to choose a proper activation function 
and cost function in order to apply the gradient dissent method. We introduced sigmoid 
function and cross-entropy cost functions for this purpose. 
 
So here is the plan: 

§ Go back to homework 2 and take the same training data set.  
§ Define a function for Logistic regression classifier (𝑦 = !

!!!!(!!.!)).  
§ In session 11, we solved a linear regression problem and found the optimal model 

parameter W, using three different gradient descent methods: batch gradient 
descent, stochastic gradient descent, and mini-batch gradient descent. Use these 
three methods to train your logistic regression classifier. 

 
  Feel free to use the codes I gave during session 11, or write your own codes. 
 


