Applied Artificial Intelligence

Session 9: Homework Discussion Linear Algebra for AI and Machine Learning II Fall 2018 NC State University Lecturer: Dr. Behnam Kia Course Website: https://appliedai.wordpress.ncsu.edu/

> ¹ Sep 25, 2018

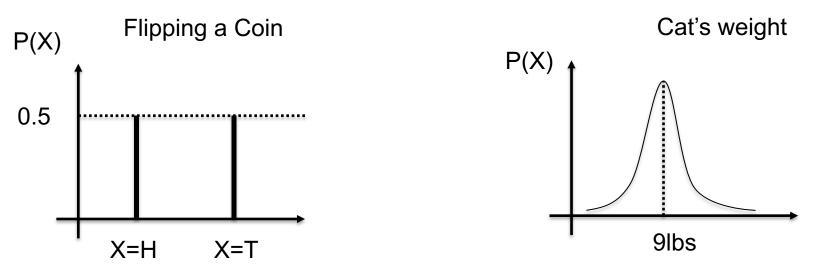
NC STATE UNIVERSITY

Homework 3: Document Classification with Naïve Bayes Classifier

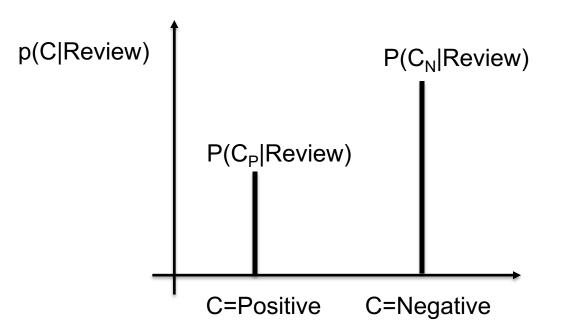
Discussion

Probability Distribution Function

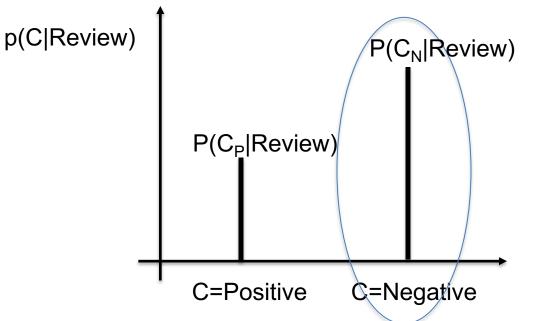
 Probability distribution function is a description of how likely a random variable or a set of variables is to take on each of its possible states.

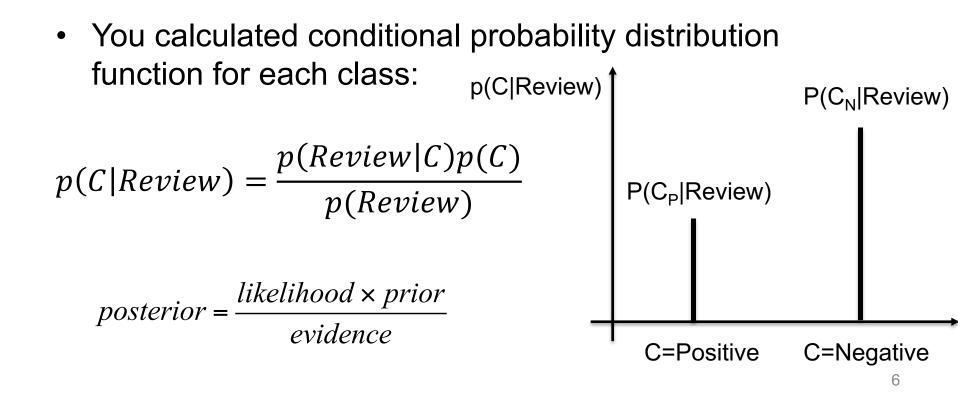


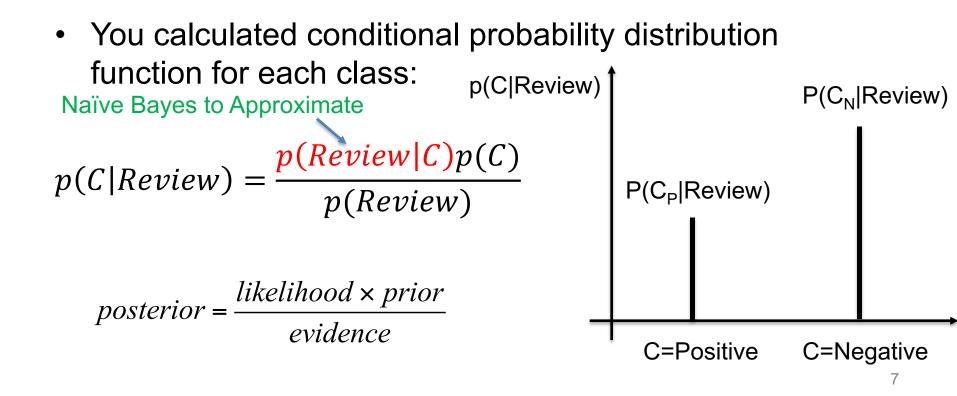
• You calculated conditional probability distribution function for each class:



- You calculated conditional probability distribution function for each class:
- And picked the class with the highest conditional probability.

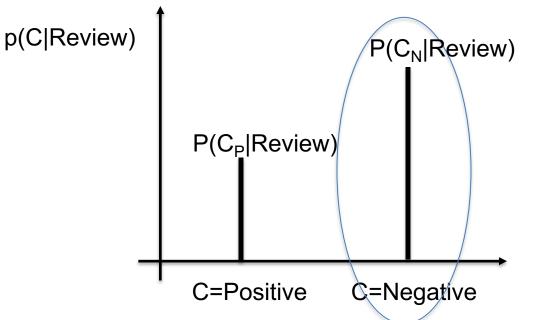






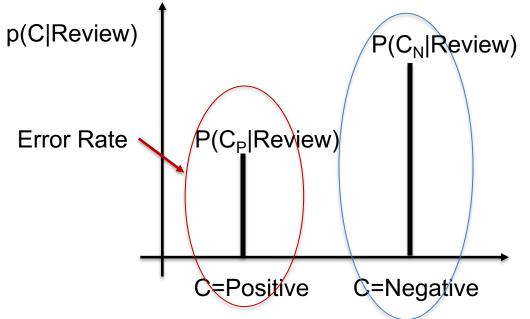
What is the Error Rate?

- You calculated conditional probability distribution function for each class:
- And picked the class with the highest conditional probability.



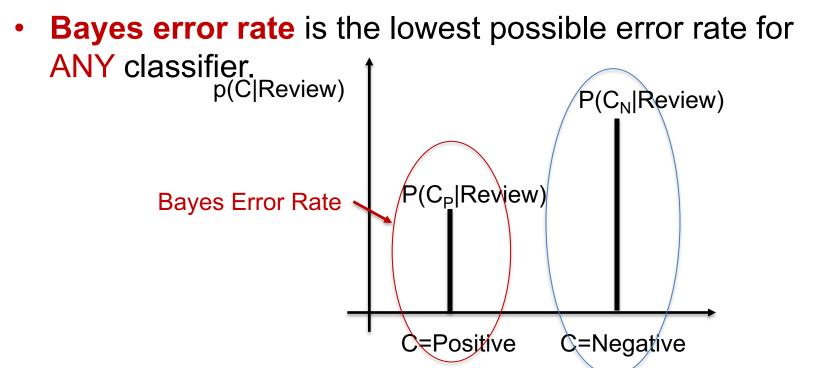
What is the Error Rate?

- You calculated conditional probability distribution function for each class:
- And picked the class with the highest conditional probability.



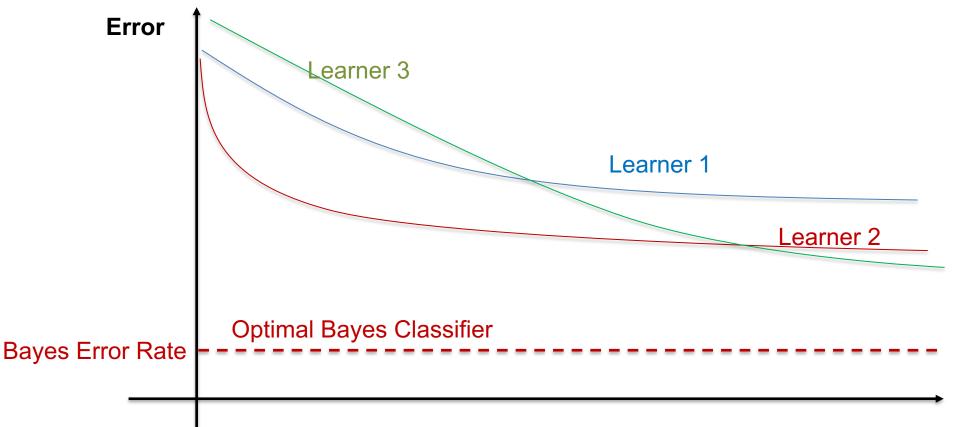
Bayes Error Rate

- You calculated conditional probability distribution function for each class:
- And picked the class with the highest conditional probability.



10

Performance of Classifiers

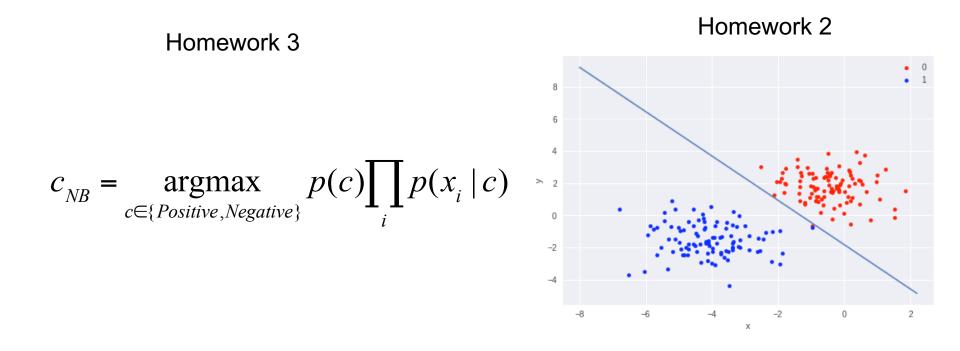


Training Data Size

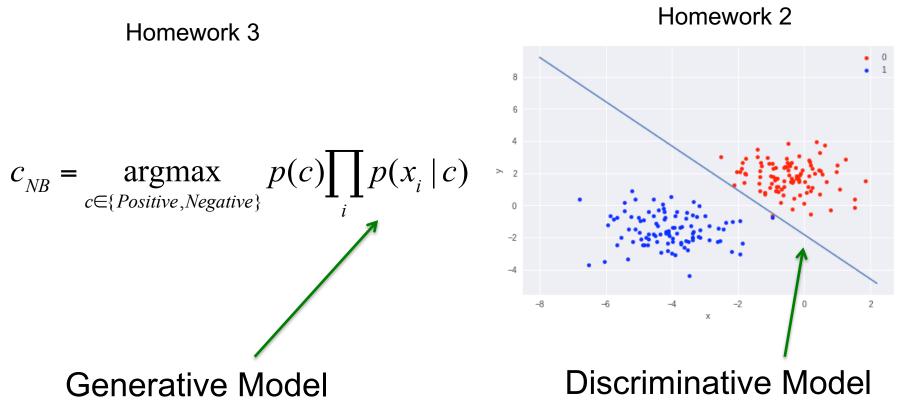
Let's don't confuse luck with statistical performance!

Homework 2 vs Homework 3

How Do you Compare Homework 2 with 3?



How Do you Compare Homework 2 with 3?



Recommended Reading

Andrew Y. NG, and Michael I. Jordan. "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes." Advances in neural information processing systems. 2002.

On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes

What is a Generative model, and What is a Discriminative Model.

On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes

Starting Point of the Article:

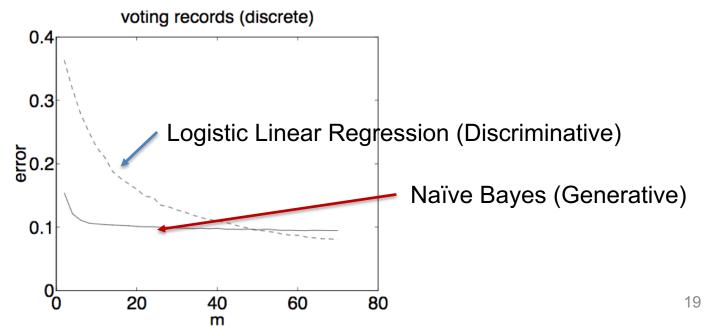
Common Wisdom: "One Should Solve the Classification Problem Directly and never [?] solve a more general problem as an intermediate step [such as modeling p(Review[C)]"

On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes

<u>Results:</u>

1: When m, the size of training data increases:

Asymptotic error of Discriminative Models≤ Asymptotic error of Generative Models

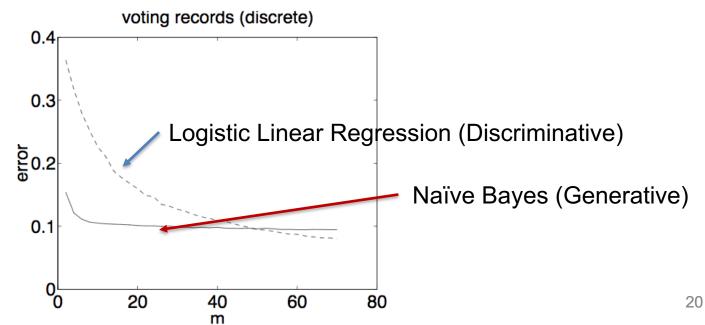


On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes

2- Generative Models converge to their asymptotic errors fasters.

For small datasets:

Error of Generative Models \leq Error of Discriminative Models



Recommended Reading

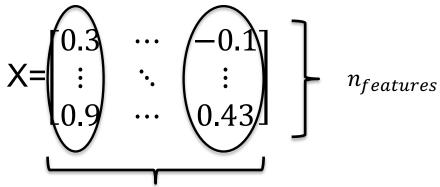
Ng, Andrew Y., and Michael I. Jordan. "On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes." Advances in neural information processing systems. 2002.

Linear Algebra for Al and Machine Learning II

Computational complexity for basic PCA

• Complexity of PCA: $O(n_{max}^2 n_{min})$

where $n_{max} = \max(n_{sample}, n_{features})$ $n_{min} = \min(n_{sample}, n_{features})$



n_{samples}

Computational complexity for basic PCA

- Computational Complexity of PCA: $O(n_{max}^2 n_{min})$ where $n_{max} = \max(n_{sample}, n_{features})$ $n_{min} = \min(n_{sample}, n_{features})$
- Computational Complexity of Randomized PCA: $O(n_{max}^2 n_{components})$

```
ipca = PCA(n_components=ncomponents,
svd_solver="randomized")
```

PCA's limitations

• It is a linear transformation

Use Kernel PCA

Kernel functions [implicitly] transform the data to a higher dimensional feature space, where linear PCA can be applied.

```
kpca = KernelPCA(kernel="rbf",
fit_inverse_transform=True, gamma=10)
```

PCA's limitations

• It is a linear transformation

Use Kernel PCA

Kernel functions [implicitly] transform the data to a higher dimensional feature space, where linear PCA can be applied.

```
kpca = KernelPCA(kernel="rbf",
fit_inverse_transform=True, gamma=10)
```

PCA's limitations

- It is a linear transformation.
- [In scikit-learn implementation of PCA] the entire data matrix should fit into the memory.
 - Solution: Use Incremental PCA, called I IncrementalPCA.

ipca = IncrementalPCA(n_components=n_components, batch_size=10)

- Go to scikit-learn website, and follow any of PCA or decomposition examples
- http://scikit-learn.org/stable/auto_examples/index.html

Final Project Proposal

- Teams of three people.
- (Preferably) choose a problem from your own field to solve.
- 2-minute presentation in the class (4-5 slides).
- An extended executive summary (1-2 page word document.)