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Random Experiment 
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Ω ={Head ,Tail}Sample Space: 



Random Variable 

•  A random variable is a variable 
that takes on different values 
based on outcomes of a random 
experiment. 

 
•  Random variable can be discrete 

or continuous.  
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Probability Distribution Function 

•  Probability distribution function is a 
description of how likely a random variable 
or a set of variables is to take on each of 
its possible states. 
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P(X) Flipping a Coin 
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Cat’s weight 
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Hypothetical Scenario 

•  We are install ing cameras and sensors in a 
neighborhood to record the presence of feral animals.  

•  There are two types of animals in the neighborhood; 
Dogs and Cats.  

•  We like to design an automatic system to determine 
whether the recorded animal is a cat or a dog. 
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Hypothetical Scenario 

•  Ratio of Cats to Dogs is 1 to 3. (75% 
are dogs, 25% cats) 
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Hypothetical Scenario 

•  Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25% 
cats) 

•  Making a decision without looking at the sensor 
readings. 
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Hypothetical Scenario 

•  Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25% 
cats) 

•  Making a decision without looking at the sensor 
readings. 
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P(dog)=0.75 P(Cat)=0.25 



Hypothetical Scenario 

•  Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25% 
cats) 

•  Making a decision without looking at the sensor 
readings. 

•  What is the expected error rate? 
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P(dog)=0.75 P(Cat)=0.25 



Hypothetical Scenario 

•  Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25% 
cats) 

•  And we have access to some data, the height of the 
animal being recorded. 
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P(dog)=0.75 P(Cat)=0.25 



Class-Conditional Probability 
Distribution Function for Height 
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Cat’s Height 
P(x|cat) 

p(x|y=y) 

inches 

Dog’s Height 
P(x|dog) 

5 25 15 35 



Class-Conditional Probability 
Distribution Function for Height 
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Cat’s Height 
P(x|cat) 

p(x|y=y) Dog’s Height 
P(x|dog) 

X0=10 inches 

5 25 15 35 

0.2 

0.03 



Bayes’ Rule  

13 13 13 

p( y | x) = p(x | y)p( y)
p(x)

posterior = likelihood × prior
evidence



Bayes’ Rule  
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p( y | x) = p(x | y)p( y)
p(x)posterior = likelihood × prior

evidence

p( y = cat | x =10) = p(x =10 | y = cat)p(cat)
p(x =10)

p( y = dog | x =10) = p(x =10 | y = dog)p(dog)
p(x =10)



Bayes’ Rule  

15 15 15 

p( y | x) = p(x | y)p( y)
p(x)posterior = likelihood × prior

evidence

p( y = cat | x =10) = p(x =10 | y = cat)p(cat)
p(x =10)

p( y = dog | x =10) = p(x =10 | y = dog)p(dog)
p(x =10)

p( y = cat | x =10) = 0.2×0.25
p(x =10)

=
0.05

p(x =10)

p( y = dog | x =10) = 0.03×0.75
p(x =10)

=
0.0225
p(x =10)



p(evidence) 
Calculated Based on Law of Total 

Probability 
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p(x =10) = ?

S 



p(evidence) 
Calculated Based on Law of Total 

Probability 
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S Cat Dog 

p(x =10) = ?

S =Cat ∪Dog



p(evidence) 
Calculated Based on Law of Total 

Probability 
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S Cat Dog 

x=10 

p(x =10) = p(x =10∩ y =Cat)+ p(x =10∩ y = Dog)



p(evidence) 
Calculated Based on Law of Total 

Probability 
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p(x =10) = p(x =10 | y = cat)p( y = cat)+ p(x =10 | y = dog)p( y = dog)

p(x =10) = 0.2×0.25+0.03×0.75
= 0.0725

S Cat Dog 

x=10 

p(x =10) = p(x =10∩ y =Cat)+ p(x =10∩ y = Dog)



Bayes’ Rule  

20 20 20 

p( y | x) = p(x | y)p( y)
p(x)posterior = likelihood × prior

evidence

p( y = cat | x =10) = 0.2×0.25
p(x =10)

=
0.05

p(x =10)
= 0.69

p( y = dog | x =10) = 0.03×0.75
p(x =10)

=
0.0225
p(x =10)

= 0.31



Which Feature x Would You Choose? 
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P(x|cat) p(x|y=y) P(x|dog) 

5 25 15 35 

P(x|cat) p(x|y=y) P(x|dog) 

5 25 15 35 

P(x|cat) 

p(x|y=y) 
P(x|dog) 

5 25 15 35 

Feature 1 Feature 2 

Feature 3 



Same Concepts,  
But in 2D  
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Pattern Classification, 
Duda, Hart, and Stork  



Same Concepts,  
But in 2D  
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Pattern Classification, 
Duda, Hart, and Stork  



Same Concepts,  
But in 2D  
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Machine Learning 
A Probabilistic Perspective 
Kevin Murphy 
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Classic Machine Learning 

Feature Extraction 
 Height  

Weight 
Ratio of head to 

body 
… 

Machine Learning 
 Cat 

Dog 
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Deep Learning 

Deep Learning 
 Cat 

Dog 



How to Get Class-Conditional Probability 
Distribution Functions? 
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Cat’s Height 
P(x|cat) 

p(x|y=y) Dog’s Height 
P(x|dog) 

X0=10 inches 

5 25 15 35 

0.2 

0.03 



Machine Learning with Many Features 
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p( y | X ) = p(X | y)p( y)
p(X )

X = (x1,x2 ,...,xk )
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The Curse of Dimensionality 
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1D 



The Curse of Dimensionality 
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1D 

2D 



The Curse of Dimensionality 
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3D 
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Naïve Bayes Rule  
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p( y | x1,x2 ,...,xk ) =
p(x1,x2 ,...,xk | y)p( y)

p(X )

≈
p(x1 | y)p(x2 | y)...p(xk | y)p( y)

p(X )

Bayes Rule 

Naïve Bayes Rule 

p(x1,x2 ,...,xk | y) ≈ p(x1 | y)p(x2 | y)...p(xk | y)

We have assumed that features x1, x2,…, and xk are 
conditionally independent given y   



Document Classification Using Naïve 
Bayes Rule  

 
(Homework III) 
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Document Classification 

•  Imagine we are given a document. We would like to 
classify it. For example: 

–  An email is spam or ham? 
–  A review is positive or negative? (sentiment analysis) 
–  The subject of the document is Math, Physics, or 

Chemistry? 
–  Authorship identification  
– … 
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Document Classification 
A review is positive or negative? 

(sentiment analysis) 
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Positive Negative 

Classifier 

? 



Document Classification 
A review is positive or negative? 

(sentiment analysis) 
 

•  Rule based approach: 
– If the review contains: 

“What an awful movie” OR  
“I need my money back!” OR 
“I wish I had got sick so I couldn’t end up going to 
watch this movie!” 

Then it is Negative! 
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Document Classification 
A review is positive or negative? 

(sentiment analysis) 
 

•  Rule based approach: 
– If the review contains: 

“What a fun movie” OR  
“I am going to watch it again!” OR 
“This movie is the best thing that has happened to 
human race!” 

Then it is Positive! 

39 



Document Classification 
A review is positive or negative? 

(sentiment analysis) 
 

•  Machine learning approach: 
–  A training set of m labeled documents (R1,c1), (R2,c2), 
…, (Rm,cm) ​𝑐↓1 , ​𝑐↓2 ,…, ​𝑐↓𝑚 ∈{𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒} 

–  Train a classifier that automatically assigns an 
unlabeled review to its correct class. 

–  Many different machine learning techniques for this 
problem; here we use Naïve Bayes’ Rule.  
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Document Representation 

•  Different representations. 

•  Here we use “the bag of words” representation. Order of 
the words doesn’t matter, just the words and how many 
times they occur in the text. 
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The Bag of Word Representation 
 
•  Review to be classified: “this was a good movie. This 

was the best movie of the series.” 
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this 2 
was 2 

a 1 
good 1 
movie 2 

the 1 
best 1 
of 1 

the 1 
series 1 

The Bag of Words Representation of the Review 



Document Classification 
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p(c | d ) = p(d | c)p(c)
p(d )

c is the class, d is the document we like to classify  



Document Classification 
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c is the class, d is the document we like to classify  

cMAP = argmax
c∈{Positive ,Negative}

p(c | d )

= argmax
c∈{Positive ,Negative}

p(d | c)p(c)
p(d )

= argmax
c∈{Positive ,Negative}

p(d | c)p(c)



Document Classification 

45 

c is the class, d is the document we like to classify  

cMAP = argmax
c∈{Positive ,Negative}

p(d | c)p(c)

= argmax
c∈{Positive ,Negative}

p(x1,x2 ,...,xn | c)p(c)



Document Classification 
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c is the class, d is the document we like to classify  

cMAP = argmax
c∈{Positive ,Negative}

p(d | c)p(c)

= argmax
c∈{Positive ,Negative}

p(x1,x2 ,...,xn | c)p(c)

≈ argmax
c∈{Positive ,Negative}

p(x1 | c)p(x2 | c)...p(xn | c)p(c)

Conditional Independence Assumption (Naïve Bayes’ Rule) 



Document Classification 
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c is the class, d is the document we like to classify  

cMAP = argmax
c∈{Positive ,Negative}

p(d | c)p(c)

= argmax
c∈{Positive ,Negative}

p(x1,x2 ,...,xn | c)p(c)

≈ argmax
c∈{Positive ,Negative}

p(x1 | c)× p(x2 | c)× ...× p(xn | c)p(c)

And we can easily learn every term on the right hand side from the training data. 



Document Classification 
Naïve Bayes 
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c is the class, d is the document we like to classify, xis are 
the words.  

cNB = argmax
c∈{Positive ,Negative}

p(c) p(xi | c)
i
∏

And we can easily learn every term on the right hand side from the training data. 



Document Classification, Naïve Bayes: 
Learning from Training Data 
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cNB = argmax
c∈{Positive ,Negative}

p(c) p(xi | c)
i
∏

p
^

(cp ) =
reviewcount(Positive)

Nreviews

p
^

(cN ) =
reviewcount(Negative)

Nreviews

Nreviews: number of reviews 
In training set 
 
reviewcount(Positive): number of 
positive reviews. 
 
 
reviewcount(Negative): number of 
negative reviews. 
 
 
 
 
 



Document Classification, Naïve Bayes: 
Learning from Training Data 
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p
^

(xi | cp ) =
count(xi , positive reviews)
count(x, positive reviews)

x∈V
∑

 
 
count(xi, positive reviews): how many times the word xi has 
appeared in positive reviews. (you have to repeat this process for 
every word xi). 
 
V: The vocabulary. All the words that show up in training reviews. 
 
 
 
 
 
 

Fraction of times word 
xi shows up among all 
words in the positive 
reviews. 



Document Classification, Naïve Bayes: 
Learning from Training Data 
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p
^

(xi | cN ) =
count(xi , negative reviews)
count(x, negative reviews)

x∈V
∑

 
 
count(xi, negative reviews): how many times the word xi has 
appeared in negative reviews. (you have to repeat this process 
for every word xi). 
 
V: The vocabulary. All the words that show up in reviews. 
 
 
 
 
 
 

Fraction of times word 
xi shows up among all 
words in the negative 
reviews. 



Document Classification, Naïve Bayes: 
Learning from Training Data 
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Two numerical Challenge: 
 
1- What if a word in a test review has never showed up in 
positive or negative training reviews? 
 

p
^

(xi | cN ) =
count(xi , negative reviews)
count(x, negative reviews)

x∈V
∑

= 0

cNB = argmax
c∈{Positive ,Negative}

p(c) p(xi | c)
i
∏



Document Classification, Naïve Bayes: 
Learning from Training Data 
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Two numerical Challenge: 
 
1- What if a word in a test review has never showed up in 
positive or negative training reviews? 
 

p
^

(xi | cN ) =
count(xi , negative reviews)+1
(count(x, negative reviews)+1)

x∈V
∑

= 0

p
^

(xi | cp ) =
count(xi , positive reviews)+1
(count(x, positive reviews)+1)

x∈V
∑



Document Classification, Naïve Bayes: 
Learning from Training Data 
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Two numerical Challenge: 
 
1- What if a word in a test review has never showed up in 
positive or negative training reviews? 
2- We are multiplying many small numbers together. How to 
fight against underflow? 
 

cNB = argmax
c∈{Positive ,Negative}

p(c) p(xi | c)
i
∏



Document Classification, Naïve Bayes: 
Learning from Training Data 
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Two numerical Challenge: 
 
1- What if a word in a test review has never showed up in 
positive or negative training reviews? 
2- We are multiplying many small numbers together. How to 
fight against underflow? 
 

cNB = argmax
c∈{Positive ,Negative}

log( p(c) p(xi | c)
i
∏ )



Document Classification, Naïve Bayes: 
Learning from Training Data 
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Two numerical Challenge: 
 
1- What if a word in a test review has never showed up in 
positive or negative training reviews? 
2- We are multiplying many small numbers together. How to 
fight against underflow? 
 cNB = argmax

c∈{Positive ,Negative}
log( p(c) p(xi | c)

i
∏ )

= argmax
c∈{Positive ,Negative}

[log p(c)+ log( p(xi | c)
i
∑ )]



Reading Assigment: 

Shimodaira, Hiroshi. "Text classification using naive bayes." 
Learning and Data Note 7 (2014): 1-9. 

https://web.stanford.edu/class/cs124/lec/naivebayes.pdf 
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