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Random Experiment

Sample Space: Q = { Head ,Tail}
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Random Variable

« Arandom variable is a variable
that takes on different values
based on outcomes of a random
experiment.

« Random variable can be discrete
or continuous.
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Probability Distribution Function

* Probabillity distribution function is a
description of how likely a random variable
or a set of variables is to take on each of

Its possible states.

P(X) Flipping a Coin Cat’s weight
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Hypothetical Scenario

« We are installing cameras and sensors in a
neighborhood to record the presence of feral animals.
 There are two types of animals in the neighborhood;

Dogs and Cats.
« We like to design an automatic system to determine
whether the recorded animal is a cat or a dog.
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Hypothetical Scenario

» Ratio of Cats to Dogs is 1 to 3. (75%
are dogs, 25% cats)
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Hypothetical Scenario

« Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25%
cats)

» Making a decision without looking at the sensor
readings.
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Hypothetical Scenario

« Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25%
cats)

» Making a decision without looking at the sensor

readings.
P(Cat)=0.25 P(dog)=0.75
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Hypothetical Scenario

« Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25%
cats)

* Making a decision without looking at the sensor
readings.

 What is the expected error rate?
P(Cat)=0.25
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Hypothetical Scenario

« Ratio of Cats to Dogs is 1 to 3. (75% are dogs, 25%
cats)

 And we have access to some data, the height of the
animal being recorded.

P(Cat)=0.25

P(dog)=0.75
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Class-Conditional Probability

Distribution Function for Height
Dog’s Height
Cat’s Height P(x|dog)
P(x|cat)

p(x|y=y)

—_— ———-

5 15 25 35

inches
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Class-Conditional Probability

Distribution Function for Height
Dog’s Height

P(xly=y) Cat’s Height P(x|dog)

0.2

0.03

5 15 25 35

X0=1EO inches b



NC STATE UNIVERSITY

Bayes’ Rule

p(y|x) = ZEPY)
p(x)
posterior = likelihood x prior

evidence

13
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) p(y)
p(x)

likelihood x prior Bayes! Rule »(|x)= p(x

posterior = -
evidence

p(x=10|y=cat)p(cat)

=cat|x=10)=
p(y | ) Sr=10)

p(x=10|y=dog)p(dog)
p(x=10)

p(y=dog|x=10)=

14
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likelihood x prior Ba

posterior = -
evidence

p(x=10|y=cat)p(cat)
p(x=10)

02x0.25  0.05
p(x=10) p(x=10)

p(y=cat|x=10)=

p(y=cat|x=10)=

p(x=10|y =dog)p(dog)

V) p(y)

yes’ Rule r(y[x)= Pl

=doo|x=10)=
p(y =dog | ) S(x=10)

0.03x0.75  0.0225
p(x=10) p(x=10)

p(y=dog|x=10)=
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p(evidence)
Calculated Based on Law of Total
Probability

p(x=10)="?
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p(evidence)
Calculated Based on Law of Total
Probability
p(x=10)="?
S Cat Dog

S = CatU Dog 7
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p(evidence)
Calculated Based on Law of Total
Probability

p(x=10)=p(x=10(Ny=Cat)+ p(x =10y = Dog)
¢

S Cat Dog

18
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p(evidence)
Calculated Based on Law of Total
Probability

p(x=10)=p(x=10Ny=Cat)+ p(x =101y = Dog)
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p(x=10)=@(x=10|y = cat) p(y = cat}+{p(x = 10| y = dog) p(y = dog )}
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) p(y)
p(x)

likelihood x prior Bayes! Rule »(|x)= p(x

posterior = -
evidence

0.2x0.25  0.05

= =0.69
p(x=10) p(x=10)

p(y=cat|x=10)=

0.03x0.75  0.0225

= =0.31
p(x=10)  p(x=10)

p(y=dog|x=10)=

20
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Which Feature x Would You Choose?

5

Feature 1

P(X]y=Y)p(x|cat) x|dog)

15 25 35 5 15 25 35
p(x|y=y) Feature 2
Feature 3 5 15 25 35 .
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Same Concepts,
But in 2D

Pattern
Classification

/l\

Pattern Classification,
Duda, Hart, and Stork Second Edition
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Same Concepts

But in 2D

pxlo)P(®,)

Decision
5 Boundary

0

Pattern Classification,
Duda, Hart, and Stork

p(xlo,)P(®,)
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Same Concepts
But in 2D

Machine Learning

A Probabillistic Perspective

Machine Learning Kevin P. Murphy
A Probabilistic Perspective
Kevin Murphy
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Classic Machine Learning

Machine Learning
Feature Extraction Cat

Height A
) > Weight Z>
Ratio of head to ™ Dog

body
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Deep Learning

Deep Learning
Cat

™ Dog
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How to Get Class-Conditional Probability
Distribution Functions?

Dog’s Height

P(xly=y) Cat’s Height P(x|dog)

0.2

0.03

5 15 25 35

X0=1EO inches o
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Machine Learning with Many Features

(X | »)p(y)

P
p(y|X) )

X =(X,X,,..,X,)

28



NC STATE UNIVERSITY

29



NC STATE UNIVERSITY

The Curse of Dimensionality

D000 00000

30



NC STATE UNIVERSITY

The Curse of Dimensionality

O ©6 © 606 6 0 O
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D000 0060606
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The Curse of Dimensionality
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Naive Bayes Rule Bayes Rule
/
p(x,%,,.0x, | 1) P(¥)
p(y‘xlaxz,-..,xk)= 1°""2 k
p(X)

_p(x [ V)p(x, | ¥)...p(x, | ) P(y)

ya p(X)

Naive Bayes Rule

We have assumed that features x., x,,..., and x, are
conditionally independent given y

p(x,x ... x, | y)=px |y)p(x,|y)..p(x |y) .
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Document Classification Using Naive
Bayes Rule

(Homework [I)

35
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Document Classification

* Imagine we are given a document. We would like to
classify it. For example:

— An email is spam or ham?
— Areview is positive or negative? (sentiment analysis)

— The subject of the document is Math, Physics, or
Chemistry?

— Authorship identification

36
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Document Classification
A review is positive or negative?
(sentiment analysis)

Hahaha I knew it.
B 13 September 2018

Straight trash. Why bother making a predator movie if you are just going to ignore all the
stories? Heck they even ignored all we have learned from the movies. It seems anyone
can defeat a predator nowadays. Back in the day, it took Arnie and a whole squad of
macho man to try to take on just one. Now any ole joe smoe can go toe to toe with the
predator. Stupid.

Classifier

Positive ?  Negative

37
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Document Classification
A review is positive or negative?
(sentiment analysis)

* Rule based approach:

— |f the review contains:
“What an awful movie” OR
‘I need my money back!” OR

“I wish | had got sick so | couldn’t end up going to
watch this movie!”

Then it iIs Negative!

38
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Document Classification
A review is positive or negative?
(sentiment analysis)

* Rule based approach:

— If the review contains:
“What a fun movie” OR
“I am going to watch it again!” OR

“This movie is the best thing that has happened to
human race!”

Then it is Positive!

39
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Document Classification
A review is positive or negative?
(sentiment analysis)

* Machine learning approach:

— Atraining set of m labeled documents (R,,c,), (R,,C,),
.. (R,,c,) cdl,cd2,.., cdm €{Positive Negative}

— Train a classifier that automatically assigns an
unlabeled review to its correct class.

— Many different machine learning techniques for this
problem; here we use Naive Bayes’ Rule.

40



NC STATE UNIVERSITY

Document Representation

« Different representations.

* Here we use “the bag of words” representation. Order of
the words doesn’t matter, just the words and how many

times they occur in the text.

41
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The Bag of Word Representation

* Review to be classified: “this was a good movie. This
was the best movie of the series.”
The Bag of Words Representation of the Review
this 2

was

a

good

the
best
of
the
series

42
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Document Classification

c is the class, d is the document we like to classify

o pd]e)p(©)
pleld)= 22

43
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Document Classification

c is the class, d is the document we like to classify

c,.»= argmax p(c|d)
cE{ Positive ,Negative}
_ aremax 2@102()

c&{ Positive ,Negative } p(d )
argmax p(d|c)p(c)

c&{ Positive ,Negative}

44



NC STATE UNIVERSITY

Document Classification

c is the class, d is the document we like to classify

C,..»= argmax p(d|c)p(c)

c&{ Positive ,Negative}

argmax  p(x,x,,...,x |c)p(c)
c&E{ Positive ,Negative }

45
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Document Classification

c is the class, d is the document we like to classify

c,,.»= argmax p(d|c)p(c)

cE{ Positive ,Negative}

= argmax  p(x,x,,...x |c)p(c)
c&E{ Positive ,Negative}

argmax  p(x, |¢)p(x, [¢)...p(x, |c) p(c)

cE{ Positive ,Negative}

U

|

Conditional Independence Assumption (Naive Bayes’ Rule) 46
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Document Classification

c is the class, d is the document we like to classify

c,,,= argmax p(d|c)p(c)

c&{ Positive,Negative }

argmax  p(x,,x,,...,x |c)p(c)
c&E{ Positive,Negative}

argmax p(x1 | ¢) ><p(x2 | c) % ...xp(xn | c)p(c)

c&E{ Positive ,Negative}

A

And we can easily learn every term on the right hand side from the training data.

47
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Document Classification
Naive Bayes

c is the class, d is the document we like to classify, x;s are
the words.

C,, =  argmax p(c)l_[ p(x. |c)

c&{ Positive ,Negative}

And we can easily learn every term on the right hand side from the training data.

48
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Document Classification, Naive Bayes:
Learning from Training Data

C,, = argmax p(c)l_[p(x | c)

c&{ Positive,Negative}

A\

reviewcount(Positive)

N o, iens: NUMber of reviews p(C‘ ) —
In training set

reviews
reviewcount(Positive): number of A

positive reviews. reviewcount(Negative)
p(c,)=

_ _ reviews
reviewcount(Negative): number of

negative reviews.

49
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Document Classification, Naive Bayes:
Learning from Training Data

' count(x., positive reviews) Fraction of imes word
p(x. | C ) — ! X; shows up among all
! p words in the positive

E count(x, positive reviews) "r® |
x&V

count(x, positive reviews): how many times the word x; has
appeared in positive reviews. (you have to repeat this process for

every word X;).

V: The vocabulary. All the words that show up in training reviews.

50
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Document Classification, Naive Bayes:
Learning from Training Data

’ count(x., negative reviews) Fraction of times word
L x; shows up among all

plx;ey) = count(x, negative reviews) “ords inthe negative
” g reviews.

x&V

count(x, negative reviews): how many times the word x; has
appeared in negative reviews. (you have to repeat this process

for every word x).

V. The vocabulary. All the words that show up in reviews.
51
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Document Classification, Naive Bayes:
Learning from Training Data

Two numerical Challenge:

1- What if a word in a test review has never showed up in
positive or negative training reviews?

A

count(x,, negative reviews)
p(x,|cy)=

=0

E count(x, negative reviews)
x&V

C,,= argmax p(c)l_[p(x | c)

c&{ Positive ,Negative } 52
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Document Classification, Naive Bayes:
Learning from Training Data

Two numerical Challenge:

1- What if a word in a test review has never showed up in
positive or negative training reviews?

A

count(x,, negative reviews) + 1

p(x;|cy)= . .
N E (count(x, negative reviews)+1)
A x&V ., . .
count(x,, positive reviews) +1
p(x,|c,)

E (count(x, positive reviews)+1)
x&V 53
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Document Classification, Naive Bayes:
Learning from Training Data

Two numerical Challenge:

1- What if a word in a test review has never showed up in
positive or negative training reviews?

2- We are multiplying many small numbers together. How to
fight against underflow?

C,,= argmax p(c)l_[p(x | c)

c&{ Positive ,Negative}

54
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Document Classification, Naive Bayes:
Learning from Training Data

Two numerical Challenge:

1- What if a word in a test review has never showed up in
positive or negative training reviews?

2- We are multiplying many small number
fight against underflow?

C,, = argmax log( p(c)l_[ p(x |c))

c&E{ Positive,Negative}

|
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Document Classification, Naive Bayes:
Learning from Training Data

Two numerical Challenge:

1- What if a word in a test review has never showed up in
positive or negative training reviews?
2- We are multiplying many small numbers together. How to
fight against underflow?

cyy= _argmax log(p(o)] | p(x; )

cE{ Positive,Negative}

= argmax [log p(c)+ ¥ log(p(x, |c))]
c&{ Positive ,Negative } ;
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Reading Assigment:

Shimodaira, Hiroshi. "Text classification using naive bayes."
Learning and Data Note 7 (2014): 1-9.

https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
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