
Applied Artificial Intelligence

Session 4: Searching as an AI Method

Fall 2018
NC State University

Instructor: Dr. Behnam Kia
Course Website: https://appliedai.wordpress.ncsu.edu/

1
Sep 4, 2018

Computational Complexity
&

Complexity Classes

2

Computational Complexity

Computational complexity theory focuses on classifying
computational problems according to their inherent
difficulty, and relating the resulting complexity classes to
each other.

– Wikipedia

3

Computational Complexity:

Why We Need It?

• We would like to get an idea of hardness of a problem
we like to solve.

• It tells us how many resources we need to solve the
problem.

• Or is it even practical trying to directly solve it?

4

Example: Searching an Array of Size N
for a specific Element

• An array of size n is filled with unsorted randomly placed,
numbers.

• Goal: Find whether a specific item x is in this array or
not.

5

11 21 33 4 55 344 3 44 … 21 1 133 34 5 934 13 414

N elements

54?

Searching an Array of Size N for A
specific Element

• An array of size n is filled with unsorted randomly placed,
numbers.

• Goal: Find whether a specific item x is in this array or
not.

6

11 21 33 4 55 344 3 44 … 21 1 133 34 5 934 13 414

N elements

54?

Searching an Array of Size N for A
specific Element

• An array of size n is filled with unsorted randomly placed,
numbers.

• Goal: Find whether a specific item x is in this array or
not.

7

11 21 33 4 55 344 3 44 … 21 1 133 34 5 934 13 414

N elements

54?

Searching an Array of Size N for A
specific Element

• An array of size n is filled with unsorted randomly placed,
numbers.

• Goal: Find whether a specific item x is in this array or
not.

8

11 21 33 4 55 344 3 44 … 21 1 133 34 5 934 13 414

N elements

54?

Searching an Array of Size N for A
specific Element

• An array of size n is filled with unsorted randomly placed,
numbers.

• Goal: Find whether a specific item x is in this array or
not.

9

11 21 33 4 55 344 3 44 … 21 1 133 34 5 934 13 414

N elements

54?

Searching an Array of Size N for A
specific Element

• An array of size n is filled with unsorted randomly placed,
numbers.

• Goal: Find whether a specific item x is in this array or
not.

10

11 21 33 4 55 344 3 44 … 21 1 133 34 5 934 13 414

N elements

54?

Searching an Array of Size N for A
specific Element

• An array of size n is filled with unsorted randomly placed, numbers.

• Goal: Find whether a specific item x is in this array or not.

11

11 21 33 4 55 344 3 44 … 21 1 133 34 5 934 13 414

n elements

• We observe that this problem can be solved in n steps, where
n is the size of the input.

• This problems belongs to computational complexity class of P.

• The class P is composed of such problems that can be solved
in Polynomial time (or number of steps) with respect to the size
of the input. (O(n)=n, n^2, n^3,…)

Complexity Classes

12

P: Can be solved in polynomial time.

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible outcomes.

13

outcome

outcome

Decision 1

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible outcomes.
And making further decisions with two outcomes for
each decision.

14

outcome

outcome

outcome

outcome

outcome

outcome

outcome

outcome
outcome

outcome
outcome

outcome
outcome

outcome

Decision 1

Decision 2
Decision 3

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible outcomes.
And making further decisions with two outcomes for
each decision.

• Goal: Find whether a specific outcome happens or not,
and if yes with what decisions?

15

outcome

outcome

outcome

outcome

outcome

outcome

outcome

outcome
outcome

outcome
outcome

outcome
outcome

outcome

Decision 1

Decision 2
Decision 3

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible outcomes.
And making further decisions with two outcomes for
each decision.

• Goal: Find whether a specific outcome happens or not,
and if yes with what decisions?

16

outcome

outcome

outcome

outcome

outcome

outcome

outcome

outcome
outcome

outcome
outcome

outcome
outcome

outcome

Decision 1

Decision 2
Decision 3

Input

Specific outcome
happens?

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible outcomes.
And making further decisions with two outcomes for
each decision.

• Goal: Find whether a specific outcome happens or not,
and if yes with what decisions?

17

outcome

outcome

outcome

outcome

outcome

outcome

outcome

outcome
outcome

outcome
outcome

outcome
outcome

outcome

Decision 1

Decision 2
Decision 3

Desired outcome?

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible options.
And making further decisions with two outcomes for
each decision.

• Goal: Find whether a specific outcome happens or not,
and if yes with what decisions?

18

outcome

outcome

outcome

outcome

outcome

outcome

outcome

outcome
outcome

outcome
outcome

outcome
outcome

outcome

Decision 1

Decision 2
Decision 3

Desired outcome?

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible options.
And making further decisions with two outcomes for
each decision.

• Goal: Find whether a specific outcome happens or not,
and if yes with what decisions?

19

outcome

outcome

outcome

outcome

outcome

outcome

outcome

outcome
outcome

outcome
outcome

outcome
outcome

outcome

Decision 1

Decision 2
Decision 3

Desired outcome?

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible options.
And making further decisions with two outcomes for
each decision.

• Goal: Find whether a specific outcome happens or not,
and if yes with what decisions?

20

outcome

outcome

outcome

outcome

outcome

outcome

outcome

outcome
outcome

outcome
outcome

outcome
outcome

outcome

Decision 1

Decision 2
Decision 3

Desired outcome?

A Series of Decisions to Obtain a Desired
Outcome.

• Imagine making a decision with two possible outcomes. And making further
decisions with two outcomes for each decision.

• Goal: Find whether a specific outcome happens or not, and if yes with what
decisions?

21

• Here the number of
decisions is the size of
the problem.

• The number of possible
outcomes to be
checked exponentially
increases by the size of
the input.

A Series of Decisions to Obtain a Desired
Outcome.

22

• This problem belongs to complexity class of NP.

• NP is a class of decision problems that:

1. A possible solution (in this case a series of
decisions) can be verified in polynomial time.

2. The problem can be solved in Non-deterministic
Polynomial time.

Informal version of (2): We

need a “lucky” algorithm to solve

in polynomial time. In practice we

cannot design a lucky algorithm.

So far practical algorithms require exponential time.

Complexity Classes

23

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.

NP

Complexity Classes

24

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.

Not all NP problems are equally hard!

NP

Complexity Classes

25

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.
NP-Complete: The hardest NP problems.

NP
NP-Complete

Complexity Classes

26

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: At least as hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

Complexity Classes:
One Million Dollar Question!

27

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P=NP
?

Complexity Classes:
One Million Dollar Question!

28

P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved
in-deterministic polynomial time. (informal definition) No
polynomial solution yet.
NP-Complete: The hardest NP problems.
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P≠NP many believe

N≠NP Implications

29

A lot of every-
day problems

NP
NP-Complete

NP-Hard

N≠NP Implications

30

A lot of every-
day problems

NP
NP-Complete

NP-Hard

Complexity Classes

31

A lot of every-
day problems

NP
NP-Complete

NP-Hard

Complexity Classes

32

A lot of every-
day problems

NP
NP-Complete

NP-Hard

Strange: I went forward in time to
see all the possible outcomes of the
present situation.
Peter: How many did you see?
Strange: Fourteen million six
hundred and five.

Log2(14,000,605)≈24

33

Computers and intractability : a guide to the
theory of NP-completeness

Michael R. Garey, David S. Johnson.

• Computational complexity is about the order of growth
with respect to input size, not absolute time given a
specific sized input.

34

Four Different Text-Book AI Approaches

35

• Search (chapters 3-6)
• Logic and Reasoning (chapters 7-11)
• Probabilistic Reasoning (chapters 12-17)
• Learning (chapters 18-21)

video

36

37

Search as a tool for problem solving and AI

38

39
Picture from Artificial Intelligence, Patrick Winston

Search Mechanisms
Brute-Force (Exhaustive) Search

40

Random Search Methods:
Pure Random Search

41

• Randomly (with a uniform distribution) choose
candidates in the solution space up until max number of
iterations performed, or an adequate fitness reached.

Randomly solution

Random Search Methods:
Pure Random Search

42

• Performance of pure random search method
experiences large variation.

• In an n-dimensional function J, the expected number of
iterations until a pure random sample point falls within
the neighborhood of the minimal point of J is:

ε

J(P)

ε

(1
ε
)n

• The process of learning a function can be considered as
a search in Euclidean space for a set of weights that
implements the function.

43

