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Computational Complexity

Computational complexity theory focuses on classifying 
computational problems according to their inherent 
difficulty, and relating the resulting complexity classes to 
each other.

– Wikipedia
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Computational Complexity:

Why We Need It?

• We would like to get an idea of hardness of a problem 
we like to solve.

• It tells us how many resources we need to solve the 
problem.

• Or is it even practical trying to directly solve it?
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Example: Searching an Array of Size N 
for a specific Element 

• An array of size n is filled with unsorted randomly placed, 
numbers. 

• Goal: Find whether a specific item x is in this array or 
not. 
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N elements
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Searching an Array of Size N for A 
specific Element 

• An array of size n is filled with unsorted randomly placed, numbers. 

• Goal: Find whether a specific item x is in this array or not. 
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11        21      33       4         55     344       3        44 … 21        1       133      34        5      934      13       414

n elements

• We observe that this problem can be solved in n steps, where 
n is the size of the input. 

• This problems belongs to computational complexity class of P.

• The class P is composed of such problems that can be solved 
in Polynomial time (or number of steps) with respect to the size 
of the input. (O(n)=n, n^2, n^3,…)



Complexity Classes
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P: Can be solved in polynomial time.



A Series of Decisions to Obtain a Desired 
Outcome.

• Imagine making a decision with two possible outcomes. 
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A Series of Decisions to Obtain a Desired 
Outcome.

• Imagine making a decision with two possible options. 
And making further decisions with two outcomes for 
each decision.

• Goal: Find whether a specific outcome happens or not, 
and if yes with what decisions? 
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A Series of Decisions to Obtain a Desired 
Outcome.

• Imagine making a decision with two possible outcomes. And making further 
decisions with two outcomes for each decision.

• Goal: Find whether a specific outcome happens or not, and if yes with what 
decisions? 
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• Here the number of 
decisions is the size of 
the problem. 

• The number of possible 
outcomes to be 
checked exponentially 
increases by the size of 
the input.



A Series of Decisions to Obtain a Desired 
Outcome.
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• This problem belongs to complexity class of NP. 

• NP is a class of decision problems that:

1. A possible solution (in this case a series of 
decisions) can be verified in polynomial time.

2. The problem can be solved in Non-deterministic 
Polynomial time.

Informal version of (2): We

need a “lucky” algorithm to solve

in polynomial time. In practice we

cannot design a lucky algorithm.

So far practical algorithms require exponential time.   



Complexity Classes
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 

NP



Complexity Classes
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 

Not all NP problems are equally hard!

NP
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 
NP-Complete: The hardest NP problems. 

NP
NP-Complete



Complexity Classes
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 
NP-Complete: The hardest NP problems. 
NP-Hard: At least as hard as the hardest NP problem.

NP
NP-Complete

NP-Hard



Complexity Classes:
One Million Dollar Question!
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 
NP-Complete: The hardest NP problems. 
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P=NP
?



Complexity Classes:
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P: Can be solved in polynomial time.
NP: Solutions verifiable in polynomial time. Can be solved 
in-deterministic polynomial time. (informal definition) No 
polynomial solution yet. 
NP-Complete: The hardest NP problems. 
NP-Hard: As hard as the hardest NP problem.

NP
NP-Complete

NP-Hard

P≠NP many believe 



N≠NP Implications
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A lot of every-
day problems
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Complexity Classes
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Complexity Classes
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A lot of every-
day problems

NP
NP-Complete

NP-Hard

Strange: I went forward in time to 
see all the possible outcomes of the 
present situation.
Peter: How many did you see?
Strange: Fourteen million six 
hundred and five.

Log2(14,000,605)≈24
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Computers and intractability : a guide to the 
theory of NP-completeness

Michael R. Garey, David S. Johnson.



• Computational complexity is about the order of growth 
with respect to input size, not absolute time given a 
specific sized input.
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Four Different Text-Book AI Approaches
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• Search (chapters 3-6)
• Logic and Reasoning (chapters 7-11)
• Probabilistic Reasoning (chapters 12-17)
• Learning (chapters 18-21)



video
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Search as a tool for problem solving and AI
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Picture from Artificial Intelligence, Patrick Winston



Search Mechanisms
Brute-Force (Exhaustive) Search

40



Random Search Methods:
Pure Random Search
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• Randomly (with a uniform distribution) choose 
candidates in the solution space up until max number of 
iterations performed, or an adequate fitness reached.

Randomly solution



Random Search Methods:
Pure Random Search
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• Performance of pure random search method 
experiences large variation.

• In an n-dimensional function J, the expected number of 
iterations until a pure random sample point falls within 
the neighborhood of the minimal point of J is: 

ε

J(P)

ε

( 1
ε
)n



• The process of learning a function can be considered as 
a search in Euclidean space for a set of weights that 
implements the function.
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