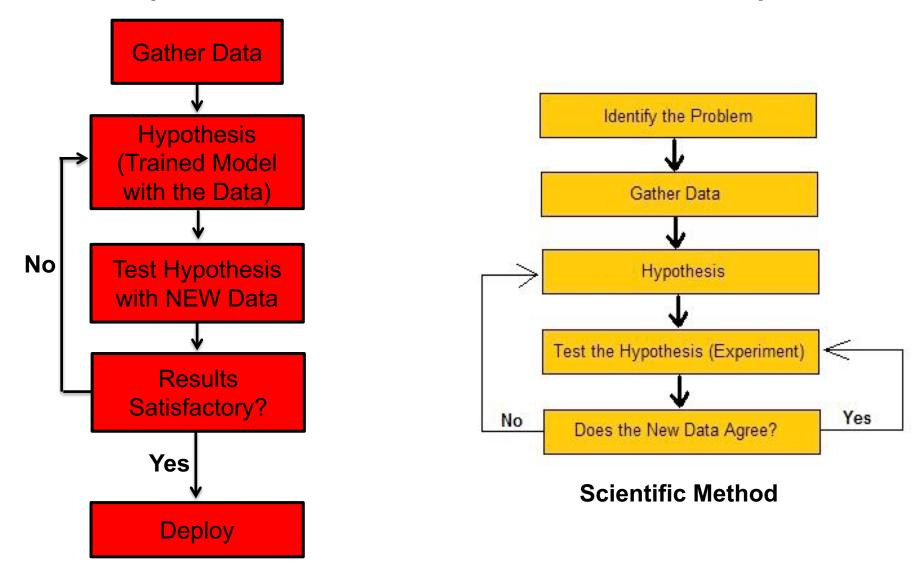
Applied Artificial Intelligence

Session 10: Linear Models Fall 2018 NC State University Lecturer: Dr. Behnam Kia Course Website: https://appliedai.wordpress.ncsu.edu/

1 Sep 27, 2018

NC STATE UNIVERSITY

Machine Learning Flowchart (Which Follows Scientific Method)



Regression Problem and Regression Models

- In Regression problems the task is to approximate a mapping function (*h*) from input variables (*x*) to continuous output variables, (also called real-valued outputs), (also called numeric outputs).
- We design Regression Models that learn from the training data to perform this task.

Training data: (x_1, y_1) , (x_2, y_2) , (x_3, y_3) ,..., (x_n, y_n)

$$\mathbf{x} \to \stackrel{\wedge}{\longrightarrow} y$$

Regression Problem and Regression Models

- In Regression problems the task is to approximate a mapping function (*h*) from input variables (*x*) to continuous output variables, (also called real-valued outputs), (also called numeric outputs).
- In this session we work on linear regression models:

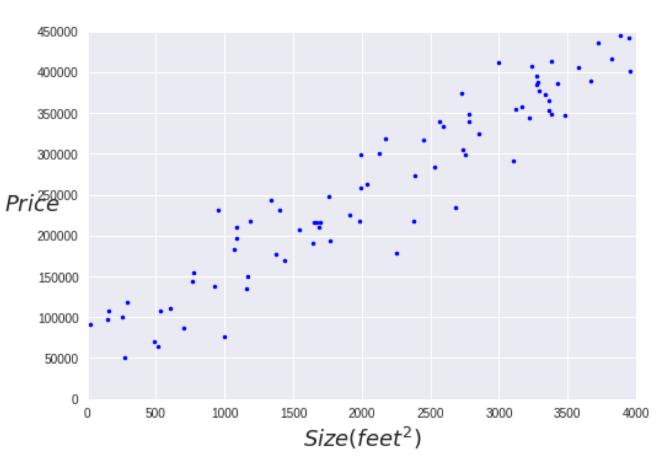
 $y = h(X) = W^T X$

Training data: (x_1, y_1) , (x_2, y_2) , (x_3, y_3) ,..., (x_n, y_n)

$$\mathbf{x} \to \stackrel{\wedge}{\longrightarrow} y$$

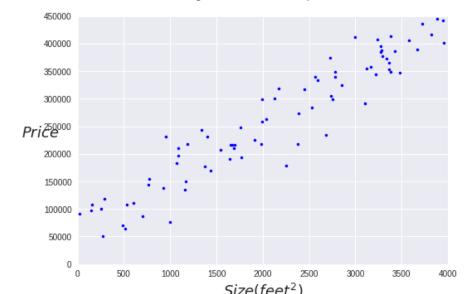
Goal: Come Up with a Linear Regression Model that Explains the Training Data, and Predicts the Price of Other Houses as Well.

(x ft²,\$ y K) (3883 ft²,\$432K) (1668 ft²,\$218K) (3577 ft²,\$366K) (1668 ft²,\$218K) (765 ft²,\$123K) (3822 ft²,\$493K)



Goal: Come Up with a Linear Regression Model that Explains the Training Data, and Predicts the Price of Other Houses as Well.

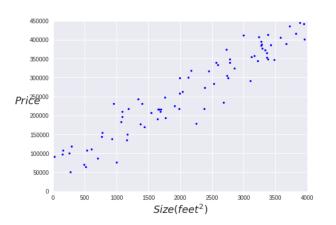
Input: x (the size of house) Target: y (the price of the house), $y \in R$ Linear Model: $\hat{y} = w_0 + w_1 x_1$



House Prices Goal: Obtaining a Linear Regression Model

Input: x (the size of house) Target: y (the price of the house), $y \in R$ Linear Model: $\hat{y} = w_0 + w_1 x_1$

Bias value

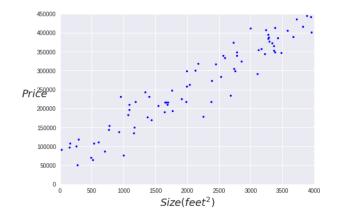


Coefficient

House Prices Goal: Obtaining a Linear Regression Model

Input: x (the size of house) Target: y (the price of the house), $y \in R$ Linear Model: $\hat{y} = w_0 x_0 + w_1 x_1$

Constant feature x₀=1

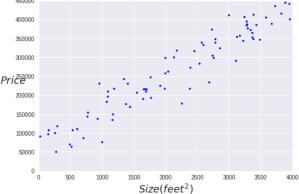


House Prices Goal: Obtaining a Linear Regression Model

Input: x (the size of house) Target: y (the price of the house), $y \in R$ Linear Model: $\hat{y} = w_0 x_0 + w_1 x_1$ $\hat{y} = W^T \cdot x_p$

where:

$$W^{T} = [w_{0}, w_{1}]$$
$$x_{p} = \begin{bmatrix} 1\\ x_{1} \end{bmatrix}$$



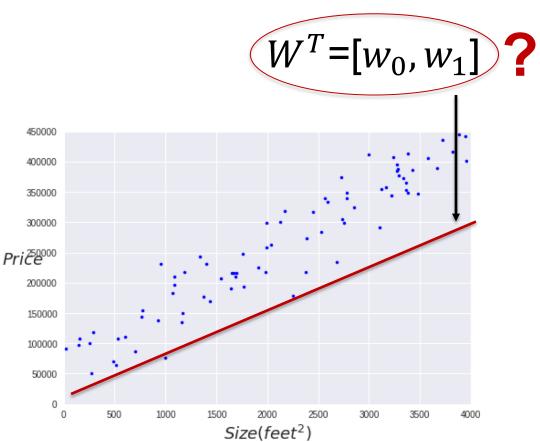
House Prices Goal: Obtaining a Linear Regression Model

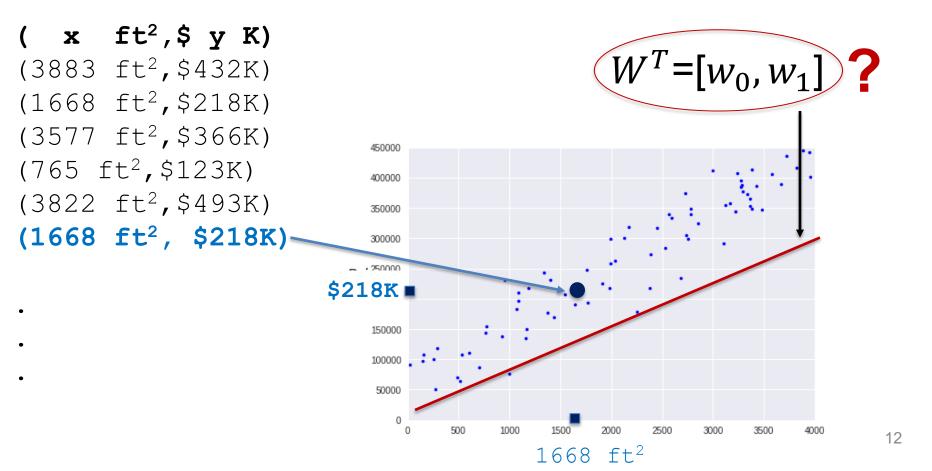
Input: x (the size of house) Target: y (the price of the house), $y \in R$ Linear Model: $\hat{y} = w_0 x_0 + w_1 x_1$ $\hat{y} = W^T \cdot x_n$ 450000 400000 where: 35000 30000 Pri25000 $=[w_0, w_1]$ 20000 15000 100000 5000 Size(feet²) $x_p =$

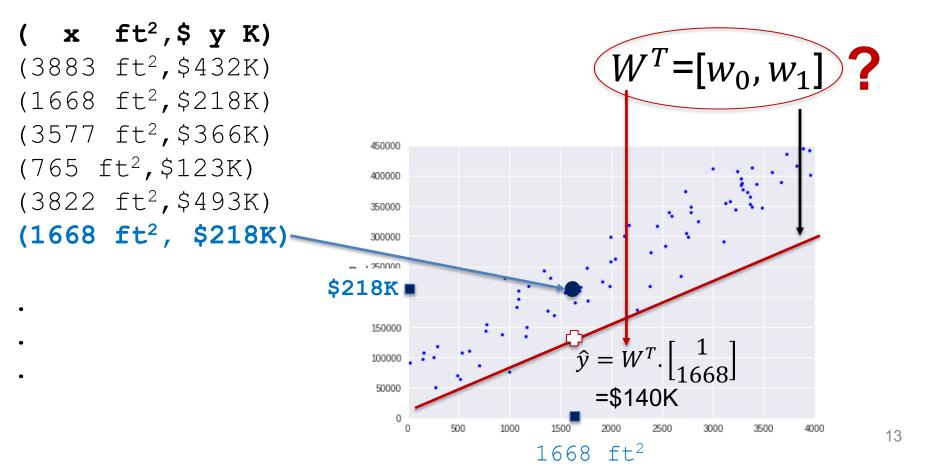
10

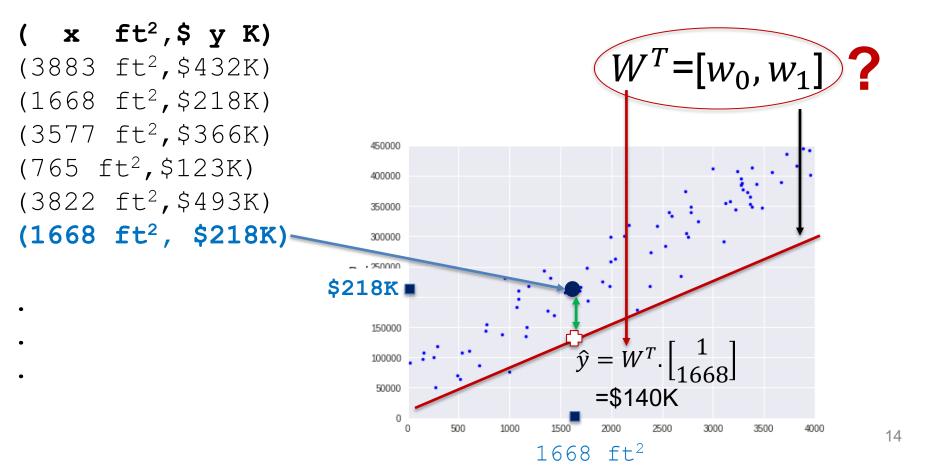
Cost Function: How well or poorly a model (Hypothesis) explains the training data

(x ft²,\$ y K) (3883 ft²,\$432K) (1668 ft²,\$218K) (3577 ft²,\$366K) (765 ft²,\$123K) (3822 ft²,\$493K) (1668 ft2, \$218K)





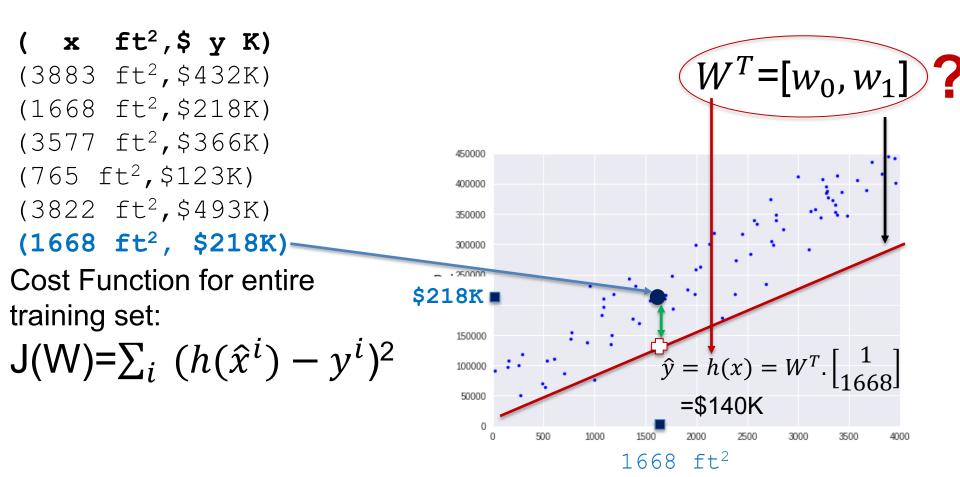


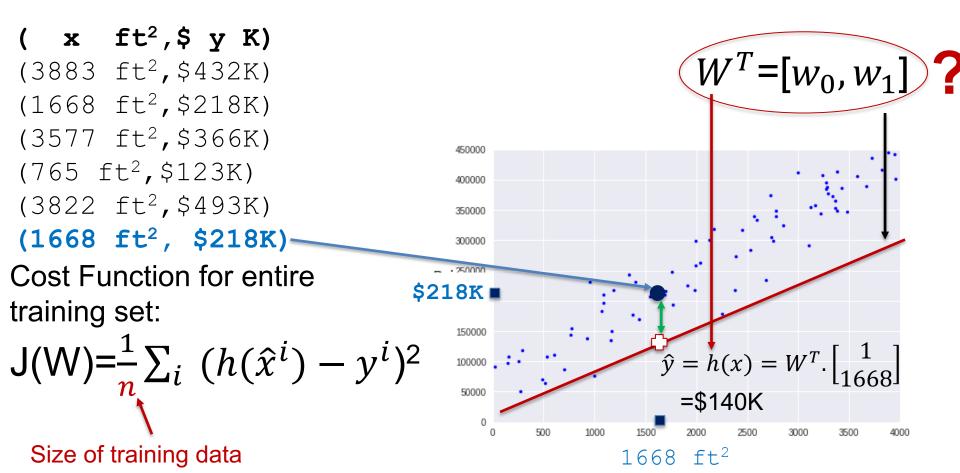


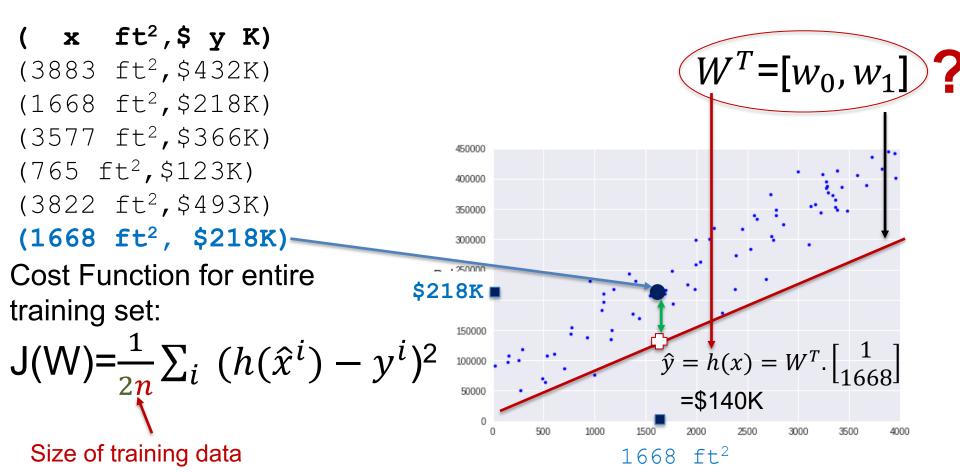
Cost Function: How well or poorly a model (Hypothesis) explains the training data

 $(x ft^2, y K)$ $W^{T} = [w_{0}, w_{1}]$ (3883 ft², \$432K) (1668 ft², \$218K) (3577 ft², \$366K) 450000 (765 ft², \$123K) 400000 (3822 ft², \$493K) 350000 (1668 ft², \$218K)-300000 250000 \$218K Cost Function for input x^{i} : $J(W)=h(\hat{x}^i)-y^i$ 150000 $\hat{y} = h(x) = W^T \cdot \begin{bmatrix} 1\\ 1668 \end{bmatrix}$ 100000 50000 =\$140K 0 500 1000 1500 2000 2500 3000 0 3500 4000

1668 ft²







Cost Function: How well or poorly a model (Hypothesis) explains the training data

Cost Function for entire training set:

$$J(W) = \frac{1}{2n} \sum_{i} (h(\hat{x}^{i}) - y^{i})^{2}$$

Therefore the training problem is reduced to an optimization problem to find parameters W that minimizes the cost function

$$W_{optimal} = \operatorname{argmin}_{W} J(W)$$

= $\operatorname{argmin}_{W} \frac{1}{2n} \sum_{i}^{M} (h(\hat{x}^{i}) - y^{i})^{2}$
= $\operatorname{argmin}_{W} \frac{1}{2n} \sum_{i}^{M} (W^{T} \cdot x_{p}^{i} - y^{i})^{2}$

How to find the minimum point of cost function?

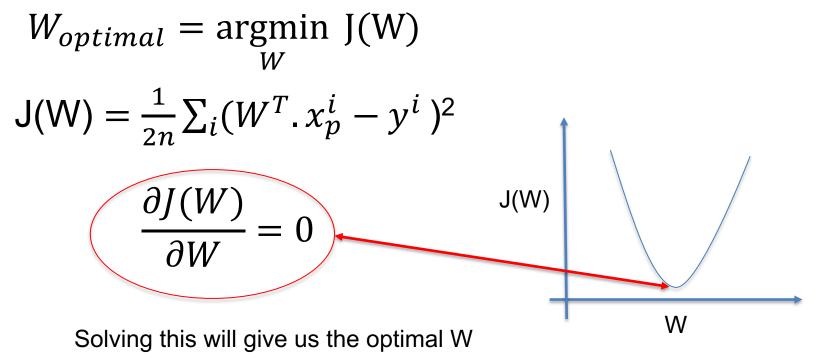
$$W_{optimal} = \underset{W}{\operatorname{argmin}} J(W)$$

$$J(W) = \frac{1}{2n} \sum_{i} (W^{T} \cdot x_{p}^{i} - y^{i})^{2}$$

$$W_{optimal} = \underset{W}{\operatorname{argmin}} J(W)$$
$$J(W) = \frac{1}{2n} \sum_{i} (W^{T} \cdot x_{p}^{i} - y^{i})^{2}$$
$$\frac{\partial J(W)}{\partial W} = 0$$
$$J(W)$$

Solving this will give us the optimal W

W



$$W_{optimal} = \underset{W}{\operatorname{argmin}} J(W)$$

$$J(W) = \frac{1}{2n} \sum_{i} (W^{T} \cdot x_{p}^{i} - y^{i})^{2}$$

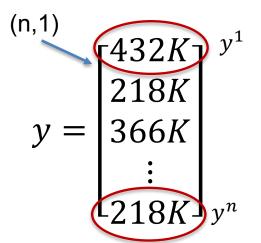
$$\frac{\partial J(W)}{\partial W} = 0 \longrightarrow W_{optimal} = (X_{p}^{T} \cdot X_{p})^{-1} \cdot X_{p}^{T} \cdot y$$

(n,1+1)

 X_p

$$W_{optimal} = \underset{W}{\operatorname{argmin}} J(W)$$
$$J(W) = \frac{1}{2n} \sum_{i} (W^{T} \cdot x_{p}^{i} - y^{i})^{2}$$

$$\frac{\partial J(W)}{\partial W} = 0 \longrightarrow W_{\text{optimal}} = (X_p^T, X_p)^{-1}, X_p^T, y$$



3883

1668

3577

1668-

 x_p^n

Γ1

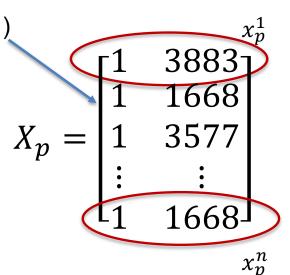
L1

(n,1+1)

$$W_{optimal} = \underset{W}{\operatorname{argmin}} J(W)$$
$$J(W) = \frac{1}{2n} \sum_{i} (W^{T} \cdot x_{p}^{i} - y^{i})^{2}$$

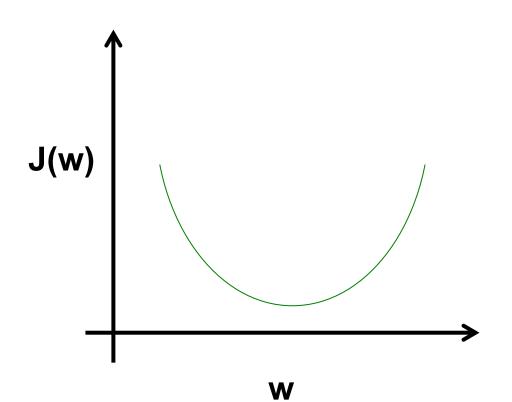
$$\frac{\partial J(W)}{\partial W} = 0 \longrightarrow W_{\text{optimal}} = (X_p^T, X_p)^{-1}, X_p^T, y$$

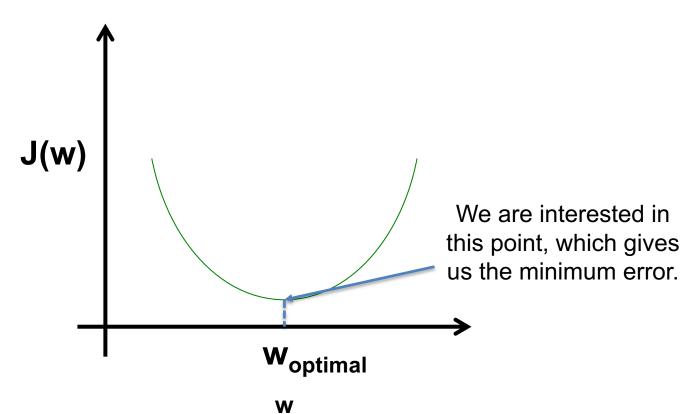
The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman Page 12, and pages 44-45

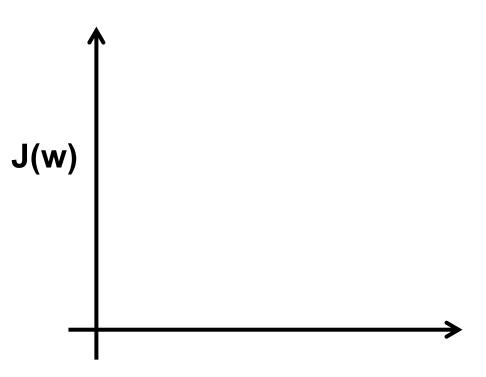


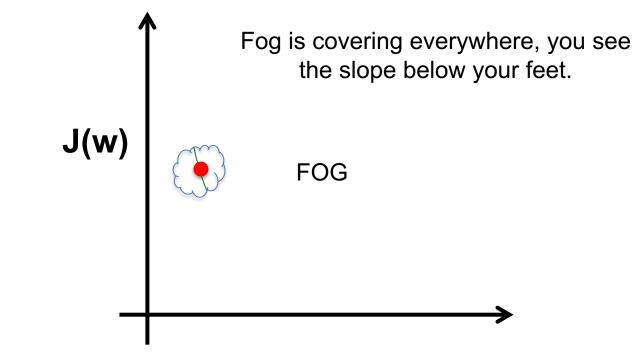
(n,1)

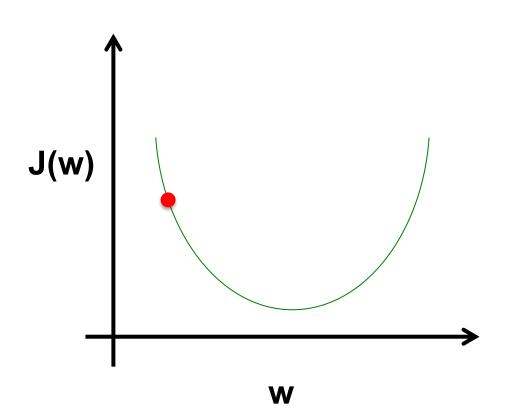
$$y = \begin{bmatrix} 432K \\ 218K \\ 366K \\ \vdots \\ 218K \end{bmatrix} y^{n}$$

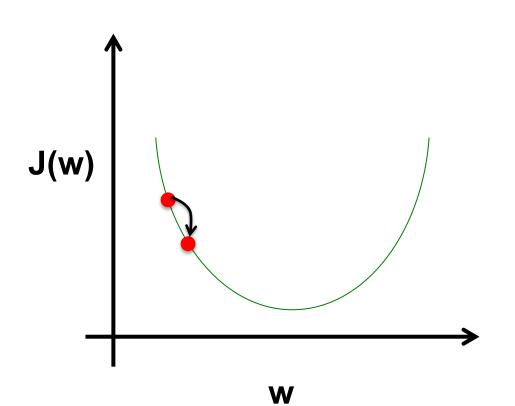


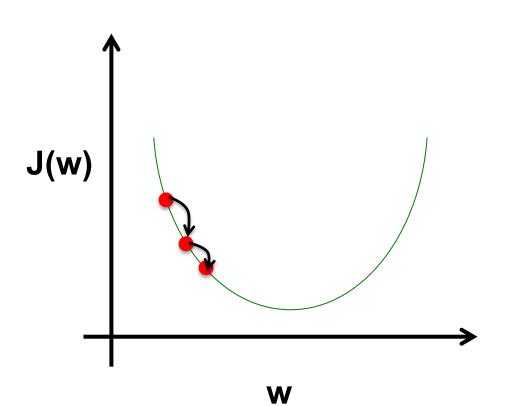


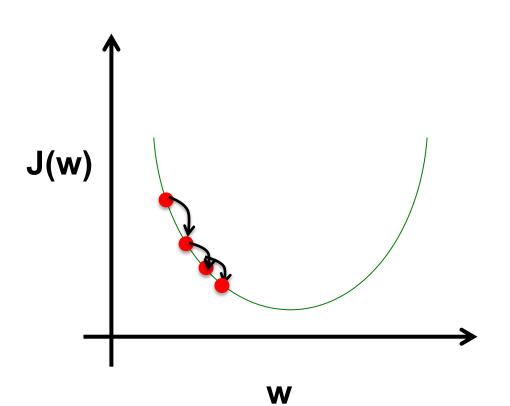


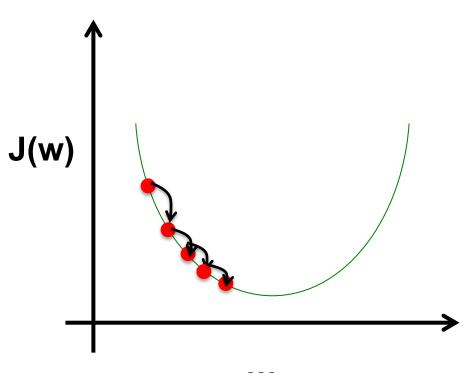


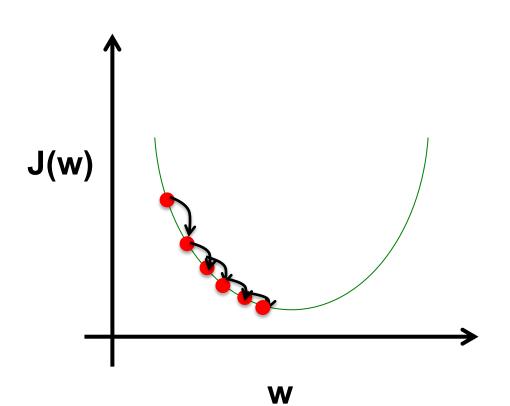


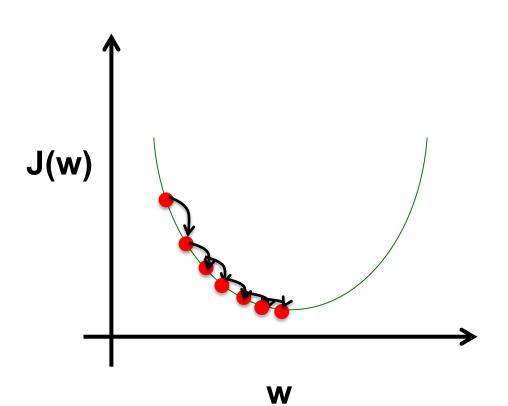


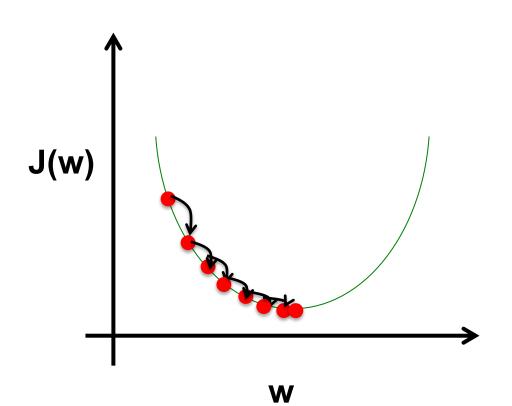






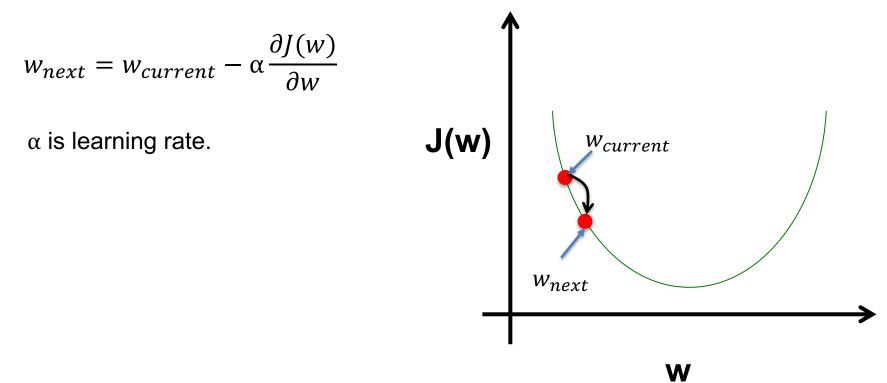




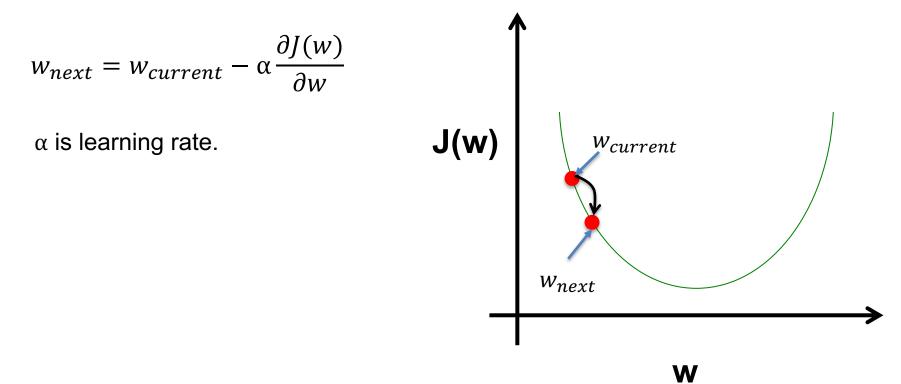


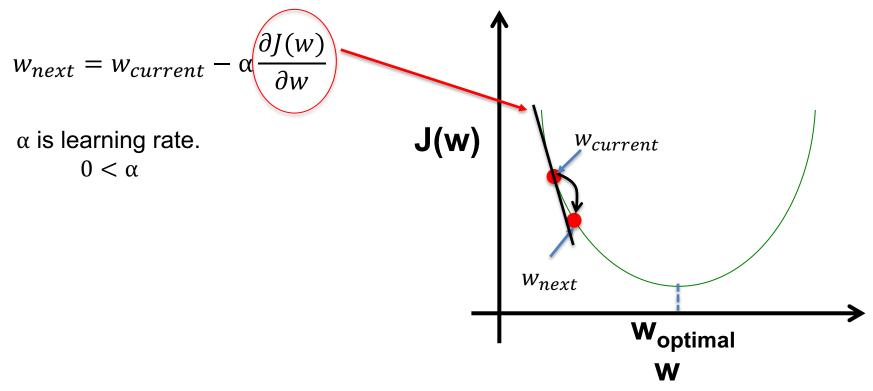
How to Formulate Gradient Descent?

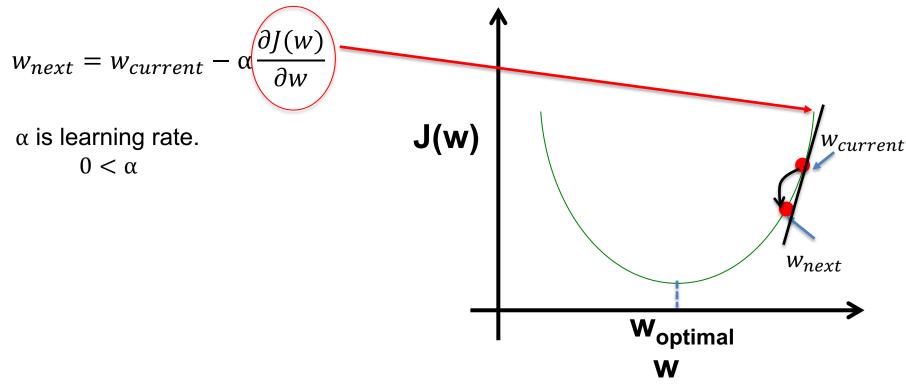
For simplicity we start from 1-D *w*, then will extend the concepts to 2-D *w*'s.

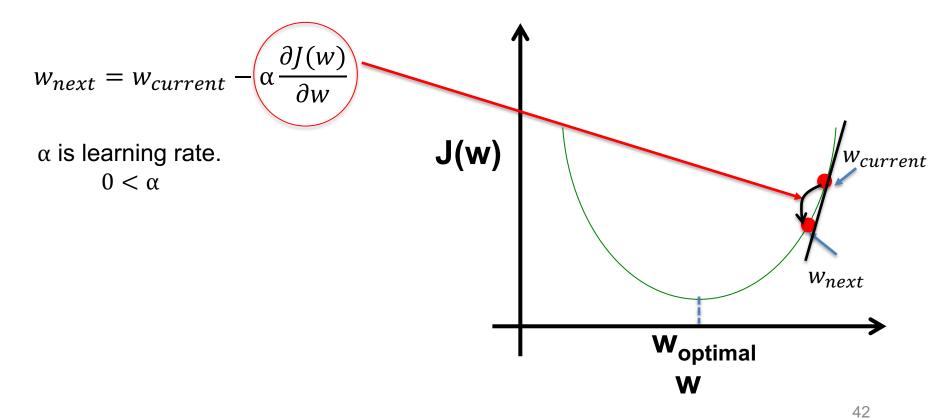


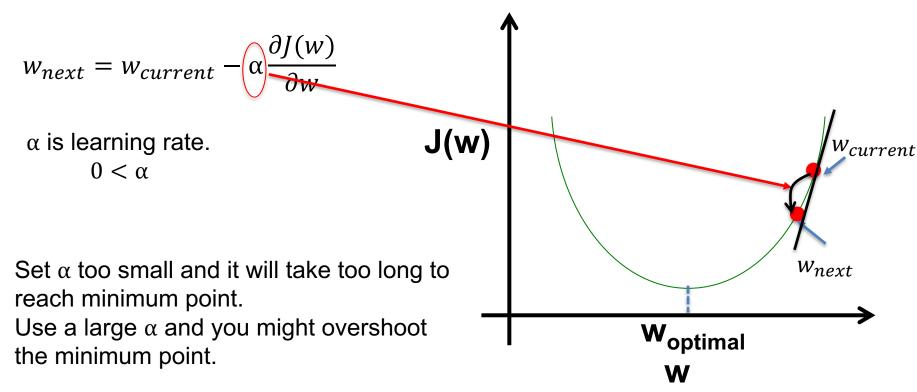
38





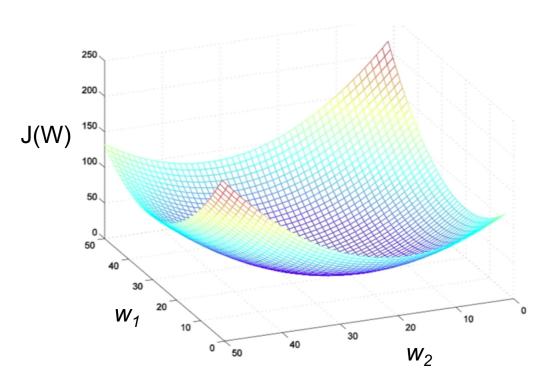






Gradient Descent in 2D

 $W_{next} = W_{current} - \alpha \nabla_W J(W)$



Gradient Descent in 2D

$$W_{next} = W_{current} - \alpha \nabla_W J(W)$$

$$J(W) = \frac{1}{2n} \sum_i (W^T \cdot x_p^i - y^i)^2$$

$$\frac{\partial J(W)}{\partial w_j} = \frac{1}{n} \sum_i (W^T \cdot x_p^i - y^i) X_{pj}^i$$

$$\nabla_W J(W) = \frac{1}{n} X_p^T \cdot (X_p^T \cdot W - y)$$

 W_2