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Review of Session 1:
Course Introduction

« What type of problems are Al problems (in which
scenarios you should use Atrtificial Intelligence)?

— Problems simple for humans to solve (intuitively), but not for computers.
— Extracting knowledge from Big Data.
— Solving dynamic, varying problems.

 |f the problem is described by a set of formal
mathematical rules (coming from Math, Physics,
Chemistry, Biology, etc.), and there are known
methods to solve it, develop a conventional computer
program and solve it. Usually this is not an Al problem
— unless it is a hard problem in terms of complexity.
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Artificial Intelligence Follows
Scientific Method

|dentify the Problem
« Al follows scientific method ‘l’
] ] Gather Data
and requires observation, J
data gollectlo_n, e
experimentation, etc. : 1
* Ther.e 1SN t any thlng Test the Hypothesis (Experiment) |<=———
magical about Al! J
No Does the New Data Agree? Lo

Scientific Method
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What you can expect from this
course.

At the end of the semester you will:

« know what an Al problem is and what is not!

 learn the basic foundations of deep learning and how to
apply it to Al problems.

« gain basic hands-on experience with Al development
tools and software.

« get enough experience, knowledge, and confidence to
pursue on your own and learn more advanced topics.
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Three Pillars to Success in Modern Al
(Deep Learning)

Success in Modern Al
(Deep Learning)

Theoretical Foundations
Modern, Practical Methods
Hands-on Experience
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Course Website is Online and
Updated

https://appliedai.wordpress.ncsu.edu/

* Grading and course policies can be found on this
website.
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Session 2: Demystifying Al,
The Big Picture

In previous session we focused on Al problems;
the problems that conventional programing fail to
solve, and we need Al.

In this session we look at the Al solutions; different
Al approaches and methods to solve
aforementioned problems (The Big Picture).

These approaches and methods will be discussed
at a greater detail during future sessions as we
explain the course roadmap.
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Some Philosophy

* In order to build Artificial Intelligence, we might
ask the philosophical question of what the
intelligence itself as.

* The answer to this question will show the path
towards Artificial Intelligence.
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Rationalism

DESCARTES

P siclolll T s e
on Method

Q

Meditations

SPINOZA

e Tthics

Q

LEIBNIZ

The Monadology
Q
WIDSINSTGIONL .S e

on Metaphyalcs

THE RATEONAMST

In philosophy, rationalism is
the epistemological view that
regards reason as the chief
source and test of
knowledge.

-Wikipedia
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Rationalism

DESCARTES

P siclolll T s e

on Method

 Mind is a reasoning machine.
. |t is equipped with knowledge,
and with a reasoning engine it

Meditations

SBI%QZA deduces new knowledge or
) solutions.
LEIBNIZ

« So to create Al we need:
« Knowledge representation.
« Areasoning engine.

The Monadolog,

Q

Discourse =0)

on Metaphysics

THE RATIONALISTS
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A famous, basic example of
reasoning (logic)

All men are mortal

_ Therefore, Socrates is mortal.
Socrates is a man

Artwork from Tate Janek
http://tatejanek.com/
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The Empiricists

LOCKE

An Essay Cencerning
Human Understanding
(Abridged)

BERKELEY

Principles of

Huoman Xnowledge
2

Three Dialogues

HUME

An Engquiry Concerning

Human Understanding

Dialegues Cencerning
Natural Religion
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The Empiricists

In philosophy, empiricism is a LO(/KE i
theory that states that e )
knowledge comes only or .
primarily from sensory RERKELBY 7
experience [observation or uman Kaomicds
datal.
-Wikipedia HUNII‘

An ‘Engu encerning ‘
Human Un d Oy
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The Empiricists

* Mind is a learning machine! - ILO(’KE i |
« Empiricism emphasizes the .
role of experience, discounts ~ BERKELE
the value of a priori
reasoning.
HUME &
 So to create Al we need: L
« Learning algorithms. N e,
* Alot of data. et aetgion [

THE EMPIRICISTS
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Machine Learning

* Machine learning algorithm is an algorithm that learns
from data with no need for explicit programing.

R MACHINE

LEARNING
= = 5a

DEEP
D D LEARNING

vvvvvvv
11810

| | | | l | |

1950's 1960's 1970's 1980's 1990's 2000's 2010's

Picture from NVIDIA's deep learning institute
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Machine Learning Flowchart
(Which Follows Scientific Method)

No

Identify the Problem

v

Gather Data

v

Hypothesis

!

Test the Hypothesis (Experiment)

!

Does the New Data Agree?

Yes

Scientific Method
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Machine Learning:

Training Model with Data
Training Data: (x; y), =1,2,3,...N
X is called features, y is label.

Parametric Model

Error Signal to
Adjust Parameters

y
Hypothesis
(Trained Model
with the Data)
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How to Adjust Parameters?

* This is an optimization problem to find
parameter values, P’, that minimizes the error.

VAN
*

P -argmin, S Error(x,y.»

Training set

Another common way to say this is shown
below, where J is cost function

P" =argmin »J(P)
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Example: House Values
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Convex Optimization Problem

J(p)
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Convex Optimization Problem
Gradient Descent Method

J(p)
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Gradient Descent Method

J(p)
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Convex Optimization Problem
Gradient Descent Method

J(p)
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Machine Learning is More than Optimization;
Generalization

* The ability to perform well on
previously unobserved inputs is called
generalization.

36
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Underfitting and Overfitting

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

—— Model
True function
e Samples

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

—— Model
True function
e Samples

Degree 15
MSE = 1.82e+08(+/- 5.45e+08)

—— Model
True function
e Samples
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House Value $

450K
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Regression vs. Classification

Yy =p1x+po
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6000

Feature 2

Feature 1
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Perceptron: A Computational Neuron
Model

y=fWX")= (> wx,)

Dendrite

Axon Terminal

Node of
Ranvier ¢

Cell body

out(t)

in(t) <

Schwann cell

Myelin sheath
Nucleus

First introduced as a computational model for a nerve cell. And ever since it
has carried the name of artificial neuron.
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Perceptron: A Computational Neuron
Model

y=FWX")=F(¥ wx,)

« Learning parameters (cost
function minimization) is a 4
convex problem.

« But very little computational
power.

« Cannot even implement a
XOR gate.

ut(t)

40
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Multilayer Perceptron
Deep Feedforward Neural Network

« Arrange perceptrons (neurons) in a network. The result
IS a Neural Network.

input layer hidden layer output layer

41
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Multilayer Perceptron
Deep Feedforward Neural Network

« Multilayer Perceptron is an extremely powerful learning
method.

It is a universal function approximator (some form of a
universal computing machine).

input layer hidden layer output layer 42
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Multilayer Perceptron
Deep Feedforward Neural Network

« Multilayer Perceptron is an extremely powerful learning
method.

It is a universal function approximator (some form of a
universal computing machine).

« But how to train it?

. outputs
Inputs

_>

input layer hidden layer output layer 43
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Machine Learning:

Training Model with Data
Training Data: (x; y), =1,2,3,...N
X is called features, y is label.

Parametric Model

Error Signal to
Adjust Parameters

y
Hypothesis
(Trained Model
with the Data)
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Multilayer Perceptron: Training
A Non-Convex Optimization Problem

A A

J(p) W J(p)

P

Linear methods
Perceptron
SVM

input layer hidden layer output layer 45
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Multilayer Perceptron: Training
A Non-Convex Optimization Problem

Non-convex optimization

problems are usually NP-
1) W Hard!

input layer hidden layer output layer 46



Output
Qutput Output Mazzl:‘ﬁiom
Additional
Output Mapping from | | | Mapping from | | layers of more
Pt features features abstract
features
Hand- Hond- Simple
designed designed Features featul;es
program features
Input Input Input Input
S Deep
Rule-based (,las:.uc learning
e machine
systems learning Representation

learning

Deep learning, Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Cambridge: MIT press.
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Different Models of Al Systems Over Time

47
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Pioneers and Heroes of Deep Learning

Geoffrey E. Hinton

! -~ .
— g

Jurgen Schmidhuber Yoshua Bengio
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« The freedom to express the learning problem as a non-
convex optimization problem gives immense modeling
power to the algorithm designer, but often such problems
are NP-hard to solve.
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Pioneers and Heroes of Deep Learning

Geoffrey E. Hinton

! -~ .
— g

Jurgen Schmidhuber Yoshua Bengio
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Deep Learning

Deep Learning, a Machine Learning technigue
that learns to represent the world as a deep
nested hierarchy of concepts.

51
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Deep Learning

« Give the entire data to the
network, and it itself picks a
chooses the features and
patterns.

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and

« Requires many layers of
network, therefore such
networks are called deep
networks.

1st hidden layer
(edges)

Visible layer
(input pixels)

Deep learning, Goodfellow, ., Bengio, Y., Courville, A., & Bengio, Y. (2016). Cambridge: MIT press. 5>
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Machine Learning

* Machine learning algorithm is an algorithm that learns
from data with no need for explicit programing.

R MACHINE

LEARNING
= = 5a

DEEP
D D LEARNING
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Picture from NVIDIA's deep learning institute
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Pioneers and Heroes of Deep Learning

Geoffrey E. Hinton
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Jurgen Schmidhuber Yoshua Bengio
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2012 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC2012)

[ >200 Layers I

28.2 ’ »
25.8
/!
16.4
o
3.57 2.99
ILSVRC'10 ILSVRC'11 ILSVRC'12 ILSVRC'13 ILSVRC'14 ILSVRC'14 ILSVRC'15 ILSVRC'16
- - AlexNet - VGGNet GooglLeNet ResNet Ensemble

Picture from http://sqlml.azurewebsites.net/
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Deep Learning
So how did they solve the training
problem after all?

A
« Back propagation method, J(p)
known for many years
« Stochastic Gradient Descent
* Alot of Data >

* Alot of Compute power (GPU)

input layer hidden layer output layer
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Linear Models
Perceptron
Multilayer Perceptron
Convolutional Network
Recurrent Neural Network
LSTM
GRU

Parametric Models: —
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Searching as an Al Mechanism

|dentify the Problem

v

Gather Data

* Al: solving problems that

don’t have a formal solution. v
;/, Hypothesis
* Explore and eXpIOit the Test the Hypothtis (Experiment) |==——
solution state and try them i
on the problem to see it No Yes

Does the New Data Agree?

solves it or not.
Scientific Method
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Next Session

Programing And Development Tools
(Or How Easy It Is to Develop Al Solutions)

Reading Assignment: Deep Learning, Chapter 1
Introduction (pages 1-26)

959



